首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric field induced conformational changes of bacteriorhodopsin were studied in six types of dried film (randomly and electrically oriented membranes of purple as well as cation-depleted blue bacteriorhodopsin) by measuring the frequency dependence of the optical absorbance change and the dielectric dispersion and absorption. For the purple bacteriorhodopsin the optical absorbance change induced by alternating rectangular electric fields of ±300 kV/cm altered the sign twice in the frequency range from 0.001 Hz to 100 kHz (around 0.03 Hz and 100 kHz), indicating that the electric field induced conformational change in these samples consists of, at least, three steps. Similarly, it was found for the blue bacteriorhodopsin that at least two steps are involved. In accord with optical measurements, the dielectric behaviour due to alternating sinusoidal electric fields of±6kV/cm in the frequency range from 10 Hz to 10 MHz showed two broad dispersion/absorption regions, one below 1 kHz and the other around 10–100 kHz. This suggests that the conformational change of bacteriorhodopsin is also reflected by its dielectrical properties and that it is partially induced at 6 kV/cm. Including previous results obtained by analysis of the action of DC fields on purple membrane films, a model for a field-induced cyclic reaction for purple as well as blue bacteriorhodopsin is proposed. In addition it was found that there are electrical interactions among purple membrane fragments in dried films.  相似文献   

2.
Iodophenyl and anthryl retinal analogues have been synthesized. Thetrans-isomers have been isolated and purified by high pressure liquid chromatography. The purified isomers have been further characterized by nuclear magnetic resonance and ultraviolet-visible spectroscopy. Incubation of these retinal analogues with apoprotein (bacterioopsin), isolated from the purple membrane ofHalobacterium halobium gave new bacteriorhodopsin analogues. These analogues have been investigated for their absorption properties and stability. The iodophenyl analogue has been found to bind to bacterioopsin rapidly. The pigment obtained from this analogue showed a dramatically altered opsin shift of 1343 cm-1. The anthryl analogue based bacteriorhodopsin, however, showed an opsin shift of 3849 cm-1. It has been found that bacteriorhodopsin is quite unrestrictive in the ionone ring site. The apoprotein seems to prefer chromophores that have the ring portion co-planar with the polyene side chain. The purple membrane has also been modified by treatment with fluorescamine, a surface active reagent specific for amino groups. Reaction under controlled stoichiometric conditions resulted in the formation of a modified pigment. The new pigment showed a band at 390 nm—indicative of fluorescamine reaction with amino group (s) of apoprotein-besides retaining its original absorption band at 560 nm. Analysis of the fluorescamine modified bacteriorhodopsin resulted in the identification of lysine 129 as the modified amino acid residue. Fluorescamine-modified-bacteriorhodopsin suspension did not release protons under photolytic conditions. However, proteoliposomes of fluorescamine-modified-bacteriorhodopsin were found to show proton uptake, though at a reduced rate. Presented at the 3rd National Symposium on Bioorganic Chemistry, 1987, Hyderabad.  相似文献   

3.
《BBA》1987,891(2):165-176
Bacteriorhodopsin and trypsin-modified bacteriorhodopsin have been reconstituted into liposomes by means of a low pH-sonication procedure. The incorporation of bacteriorhodopsin in these proteoliposomes is predominantly in the same direction as in vivo and the direction of proton pumping is from inside to outside the liposomes. The direction of proton translocation and electrical potential generation was studied as a function of the reconstitution pH. Light-dependent proton extrusion and generation of a Δp, interior negative and alkaline was observed at a reconstitution pH below 3.0 using bacteriorhodopsin, and at a pH below 3.5 using trypsin-modified bacteriorhodopsin. The shift in inflection point is explained in terms of differences between bacteriorhodopsin and trypsin-modified bacteriorhodopsin in a specific protein-phospholipid interaction which depends on the surface charge density of the cytoplasmic side of bacteriorhodopsin. The magnitude of the protonmotive force (Δp) generated by trypsin-modified bacteriorhodopsin in liposomes was quantitated. Illumination of the proteoliposomes resulted in the generation of a high Δp (135 mV, inside negative and alkaline), with a major contribution of the pH gradient. The ionophores nigericin and valinomycin induced, respectively, a compensatory interconversion of ΔpH into Δψ and vice versa. If no endogenous proton permeability of the membrane would exist, a protonmotive force could be generated of − 143 mV as electrical potential alone or − 162 mV as pH gradient alone.  相似文献   

4.
Reversible temperature-dependent conformational changes in bacteriorhodopsin of the purple membranes from Halobacterium halobium have been studied by the method of deuterium exchange. A noticeable increase in the mobility of structured peptide groups in bacteriorhodopsin was revealed upon reorganization of the supermolecular structure at about 60 degrees C. In the supermolecular structure formed, bacteriorhodopsin molecules have no contacts with external medium at 75-80 degrees C. Membrane destruction results in a drastic increase in molecular mobility within the narrow temperature range 100-110 degrees C. The effects observed are induced by predenaturation changes in the bacteriorhodopsin structure and rearrangements in the structure of a protein-lipid complex. The temperature dependence of the number of peptide groups involved in reversible conformational rearrangements is in good agreement with the microcalorimetry data.  相似文献   

5.
Possible steps in the folding of bacteriorhodopsin are revealed by studying the refolding and interaction of two fragments of the molecule reconstituted in lipid vesicles. (1) Two denatured bacteriorhodopsin fragments have been purified starting from chymotryptically cleaved bacteriorhodopsin. Cleaved bacteriorhodopsin has been renatured from a mixture of the fragments in Halobacterium lipids/retinal/dodecyl sulfate solution following removal of dodecyl sulfate by precipitation with potassium. The renatured molecules have the same absorption spectrum and extinction coefficient as native cleaved bacteriorhodopsin. They are integrated into small lipid vesicles as a mixture of monomers and aggregates. Extended lattices form during the partial dehydration process used to orient samples for X-ray and neutron crystallography. (2) Correct refolding of cleaved bacterioopsin occurs upon renaturation in the absence of retinal. Regeneration of the chromophore and reformation of the purple membrane lattice are observed following subsequent addition of all-trans retinal. (3) The two chymotryptic fragments have been reinserted separately into lipid vesicles and refolded in the absence of retinal. Circular dichroism spectra of the polypeptide backbone transitions indicate that they have regained a highly alpha-helical structure. The kinetics of chromophore regeneration following reassociation have been studied by absorption spectroscopy. Upon vesicle fusion, the refolded fragments first reassociate, then bind retinal and finally regenerate cleaved bacteriorhodopsin. The complex formed in the absence of retinal is kinetically indistinguishable from cleaved bacterioopsin. The refolded fragments in lipid vesicles are stable for months, both as separate entities and after reassociation. These observations provide further evidence that the native folded structure of bacteriorhodopsin lies at a free energy minimum. They are interpreted in terms of a two-stage folding mechanism for membrane proteins in which stable transmembrane helices are first formed. They subsequently pack without major rearrangement to produce the tertiary structure.  相似文献   

6.
The conditions for coreconstitution of a bacterial ATP synthase and bacteriorhodopsin into lecithin liposomes and for light driven ATP synthesis have been optimized. A rate of maximally 280 nmol ATP min-1 mg ATP synthase-1 was achieved with monomerized bacteriorhodopsin compared with a rate of up to 45 nmol ATP min-1 mg-1 found for proteoliposomes containing bacteriorhodopsin in the form of purple membrane patches. The different rates are explained by the finding that monomeric bacteriorhodopsin is more homogeneously distributed among the liposomes than the purple membrane patches. The final activities depended on both the purification method for the two proteins and the coreconstitution procedure. Furthermore, the ratio (lipid to bacteriorhodopsin to ATP synthase) could be optimized. Light-driven ATP synthesis depends also on the type of detergent used. The best result was obtained by deoxycholate. Also the relationship between proton translocation (by bacteriorhodopsin) and ATP synthesis activity was measured. A constant H+/ATP ratio was found at higher light intensities. This ratio increased strongly at lower light intensities.  相似文献   

7.
本实验通过不同水合度下天然紫膜、脱脂菌紫质吸附等温线分析、红外光谱对比,讨论了天然紫膜小磷脂、蛋白质、水三者作用关系,认为磷脂对天然紫膜中蛋白质表而一些极性基团的分布及水合有重要作用,这些位点的水合对蛋白质进一步水合变化起重要作用.  相似文献   

8.
A gentle method for the lysis of oral streptococci.   总被引:41,自引:0,他引:41  
Black lipid planar membranes were prepared by incorporating polymers such as polystyrene in a membrane forming solution. The polymerincorporated planar membranes showed greater stability to applied electric fields and have longer lifertimes. Photopotentials were studied under several conditions; with bacteriorhodopsin in the planar membrane; with bacteriorhodopsin in liposomes; with bacteriorhodopsin fragments in suspension; and with bacteriorhodopsin both in the planar membrane and in liposomes. Skulachev's laboratory has reported that bacteriorhodopsin-liposomes develop potentials across a black lipid planar membrane. In our studies, because the polymer incorporated planar membranes are very stable, it was possible to obtain somewhat larger photopotentials in the presence of bacteriorhodopsin ranging between 30–500 mV. The enhancement of bacteriorhodopsin catalyzed photopotentials, found in the presence of Ca++ (or other bivalent cations) and/or applied electric fields, appeared to result from an orientation effect of bacteriorhodopsin at the membrane interface.  相似文献   

9.
The independent effects of oxygen tension and growth rate on bacteriorhodopsin synthesis in Halobacterium halobium have been studied in chemostat cultures. Bacteriorhodopsin synthesis occurs only at low growth rates and is stimulated by low oxygen tension. Fast growth rates override the stimulatory effects of oxygen tension, with the result that bacteriorhodopsin can scarcely be detected. Illumination of cultures maintained at low growth rate and low oxygen tension significantly increases the steady state cell yield. This finding suggests that under these conditions the purple membrane proton pump is coupled to energy transduction.  相似文献   

10.
The effects of solvation and charge-charge interactions on the pKa of ionizable groups in bacteriorhodopsin have been studied using a macroscopic dielectric model with atom-level detail. The calculations are based on the atomic model for bacteriorhodopsin recently proposed by Henderson et al. Even if the structural data are not resolved at the atomic level, such calculations can indicate the quality of the model, outline some general aspects of electrostatic interactions in membrane proteins, and predict some features. The effects of structural uncertainties on the calculations have been investigated by conformational sampling. The results are in reasonable agreement with experimental measurements of several unusually large pKa shifts (e.g. the experimental findings that Asp96 and Asp115 are protonated in the ground state over a wide pH range). In general, we find that the large unfavorable desolvation energies of forming charges in the protein interior must be compensated by strong favorable charge-charge interactions, with the result that the titrations of many ionizable groups are strongly coupled to each other. We find several instances of complex titration behavior due to strong electrostatic interactions between titrating sites, and suggest that such behavior may be common in proton transfer systems. We also propose that they can help to resolve structural ambiguities in the currently available density map. In particular, we find better agreement between theory and experiment when a structural ambiguity in the position of the Arg82 side-chain is resolved in favor of a position near the Schiff base.  相似文献   

11.
Positions and rotations of two helices in the tertiary structure of bacteriorhodopsin have been studied by neutron diffraction using reconstituted, hybrid purple membrane samples. Purple membrane was biosynthetically 2H-labeled at non-exchangeable hydrogen positions of leucine and tryptophan residues. Two chymotryptic fragments were purified, encompassing either the first two or the last five of the seven putative transmembrane segments identified in the amino acid sequence of bacteriorhodopsin. The 2H-labeled fragments, diluted to variable extents with the identical, unlabeled fragment, were mixed with their unlabeled counterpart; bacteriorhodopsin was then renatured and reconstituted. The crystalline purple membrane samples thus obtained contained hybrid bacteriorhodopsin molecules in which certain transmembrane segments had been selectively 2H-labeled to various degrees. Neutron diffraction powder patterns were recorded and analyzed both by calculating difference Fourier maps and by model building. The two analyses yielded consistent results. The first and second transmembrane segments in the sequence correspond to helices 1 and 7 of the three-dimensional structure, respectively. Rotational orientations of these two helices were identified using best fits to the observed diffraction intensities. The data also put restrictions on the position of the third transmembrane segment. These observations are discussed in the context of folding models for bacteriorhodopsin, the environment of the retinal Schiff base, and site-directed mutagenesis experiments.  相似文献   

12.
Correspondence of phases of electrogenesis, photocycle transitions, and proton transfer with the proton transporting groups of bacteriorhodopsin was studied. The structure of bacteriorhodopsin was considered by the file 1c3w and projections of sites of the proton movement pathway onto the normal to the purple membrane were measured. The dielectric permeability of the terminal site of the semichannel Schiff base external surface of the purple membrane was noticeably higher than in the center of the membrane.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1725–1728.Original Russian Text Copyright © 2004 by Khitrina, Ksenofontov.  相似文献   

13.
The phase transition of the purple membrane observed by differential scanning calorimetry (Jackson, M.B. and Sturtevant, J.M. (1978) Biochemistry 17, 911–915) has been investigated by X-ray diffraction, circular dichroism and absorption spectrum, in comparison with the phase transition in the brown holo-membrane. The two-dimensional crystal of bacteriorhodopsin transformed into two-dimensional liquid around 74–78°C in the purple membrane and around 50–60°C in the brown holo-membrane. The X-ray diffraction patterns obtained at 78°C for the purple membrane and at 60°C for the brown holo-membrane exhibit several broad peaks. Analysis of the pattern suggests that bacteriorhodopsin molecules aggregate in trimers even above the phase transition temperature. The negative circular dichroism band in the visible region is still present at 80°C in the purple membrane and at 60°C in the brown holo-membrane, but becomes negligibly small at 70°C in the brown holo-membrane. The 560 nm absorption peak due to bacteriorhodopsin changes its position and height drastically around 80°C in the brown holo-membrane as in the purple membrane. X-ray diffraction studies have been made on membranes of total lipids extracted from the purple membrane. No indication of the phase transition has been found between ?81°C and 77°C.  相似文献   

14.
Summary Interface films of purple membrane and lipid containing spectroscopically intact and oriented bacteriorhodopsin have been used as a model system to study the function of this protein. Small positive charges in surface potential (<1 mV) are detected upon illumination of these films at the air-water interface. These photopotentials, are not affected by overlaying the interface film with a thin layer (0.3 mm) of decane. However, they are dramatically increased when lipid soluble proton carriers FCCP or DNP are added to the decane. The polarity of the photopotential indicates that, in the light, positive charges are transported through the interface from the aqueous to the organic phase. The action spectrum of the photopotential is identical to the absorption spectrum of bacteriorhodopsin. Since bacteriorhodopsin molecules are oriented with their intracellular surface towards the aqueous subphase, the characteristics of the photopotential indicate that in the light bacteriorhodopsin translocates protons from its intracellular to its extracellular surface. The kinetics of the photopotential reveal that the rate and extent of proton transport are proportional both to the fraction of bacteriorhodopsin molecules excited and to the concentration of proton acceptor. The photopotentials result from changes in the ionic distribution across the decane-water interface and can be cancelled by lipid soluble anions.  相似文献   

15.
《BBA》1985,808(1):1-12
The light-driven primary proton pump bacteriorhodopsin has been incorporated in the cytoplasmic membrane of Streptococcus cremoris, in order to generate a protonmotive force across these membranes. This has been achieved by fusion of S. cremoris membrane vesicles with bacteriorhodopsin proteoliposomes. This fusion occurred when both preparations were mixed at low pH (less than 6.0), as shown by sucrose density gradient centrifugation and by dilution of fluorescent phospholipids incorporated into the bacteriorhodopsin proteoliposomes. Fusion was strongly enhanced by the presence of negatively charged phospholipids in the liposomal bilayer. When proteoliposomes were used that showed light-dependent proton uptake, the orientation of bacteriorhodopsin in the fused membranes was inside-out with respect to the in vivo orientation in Halobacterium halobium. Consequently, in the light a ΔΨ, interior positive and a ΔpH, interior acid were generated. This protonmotive force could drive calcium uptake in the fused membranes. The uptake increased hyperbolically with increasing light intensity and was abolished by bleaching of bacteriorhodopsin. Addition of the ionophore valinomycin stimulated calcium uptake and led to an increase of the ΔpH. Calcium uptake was strongly decreased in the dark and in the light in the presence of uncouplers, nigericin or both valinomycin and nigericin.  相似文献   

16.
Optical absorption and emission measurements have been made on samples of light-adapted purple membrane of Halobacterium halobium at temperatures ranging from 77 K to room temperature. As a result of these experiments a set of equations is given which described thermal and photochemical reactions interrelating various intermediates of the reaction cycle of the chromophore of light-adapted bacteriorhodopsin (BR). Further some specific problems connected to these intermediates have been investigated. Thus the room temperature emission spectrum of bacteriorhodopsin has been found to exhibit a Stokes shift of 3430 cm-1 only, if low excitation intensities are used. The recently detected intermiediate P-BR can be shown to convert thermally into bacteriorhodopsin following a first-order decay with the activation energy delta E = 2.4 +/- 0.2 kcal/mol. The thermal decay of K-BR consists of two exponentials if measured on purple membrane suspensions in a mixture of H2O and glycerol (1 : 1, v/v). A simple procedure is given for trapping the intermediate L-BR at 170 K in a very pure form. M-BR is shown to consist of two species, MI-BR and MII-BR. They are characterized by similar optical absorption spectra but different thermal stability. Further the oscillator strengths corresponding to the long wavelength absorption bands of the intermediates bacteriorhodopsin, K-, L, MI- and MII-BR have been calculated. They have been discussed with respect to the question which of the corresponding absorption spectra show the characteristics of isomerism of the chromophore or simply solvatochromism.  相似文献   

17.
Hydrophobic organization: Determination of the structure of the bacterial photosynthetic reaction center, bacterial porins, and bacteriorhodopsin allows a comparison of the basic structural features of integral membrane proteins. Structure parameters of membrane- and water-soluble proteins are surprisingly similar, given the different dielectric environments, except for the polarity of residues on the protein surface. Hydrophobic and electrostatic forces: 1) Intramembrane helix-helix interactions that are sensitive to small structure changes can dictate assembly of membrane proteins, as indicated by reconstitution of bacteriorhodopsin from proteolytic fragments and specific dimer formation of the human erythrocyte sialoglycoprotein glycophorin A. 2) Electrostatic interactions have an important role in determining the trans-membrane orientation of integral membrane proteins of the bacterial inner membrane, as expressed by the "positive-inside" rule for the distribution of basic residues on the cis relative to the trans side of the membrane-spanning alpha-helices. The use of this charge asymmetry rule, in conjunction with a hydrophobicity algorithm for prediction of membrane-spanning domains, allows accurate prediction of the folding patterns of such polypeptides across the membrane. A role of electrostatic interactions in assembly and maintenance of the structure of oligomeric integral membrane protein complexes is also implied by the separation and extrusion from the membrane, at high pH, of the major hydrophobic subunits of the cytochrome b6f complex from the chloroplast thylakoid membrane. It is inferred that the hydrophobic helix-helix interactions between the subunits of this complex, whose function is electron transfer and proton translocation, are relatively weak compared to those in bacteriorhodopsin.  相似文献   

18.
To elucidate the role of tyrosine residues in the shift of max and the light-driven proton pump of bacteriorhodopsin~ the photochemical reaction of tyrosine-iodinated bacteriorhodopsin (tyr-mod-bR) was investigated by low-temperature spectrophotometry. After 4–5 of 11 tyrosine residues of bacteriorhodopsin were iodinated, the meta-intermediate of tyr-mod-bR in 75% glycerol solution became so stable that its decay could be observed even at room temperature and i t was stable in the dark for several hours at –65°C.Four batho-intermediates were formed by irradiation with green light (500 nm) at –170°C. Like native bacteriorhodopsin, these batho-intermediates were photoreversible at –170°C. Four corresponding meta-intermediates were also formed by irradiation at –60°C. Using the difference spectra between meta-intermediates and tyr-mod-bR, the absorption spectra of four kinds of tyr-mod-bRs, batho-intermediates, and meta-intermediates were estimated. Each was at shorter wavelengths than that of its corresponding type in native bacteriorhodopsin. The results indicate that two or more tyrosine residues have some role in determining color in native bacteriorhodopsin.  相似文献   

19.
1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a concentration lowering the light resistance. The dark resistance is shown to be higher than the light one, and decreases to the light level by gramicidin. 8. A simple equivalent electric scheme consistent with the above results has been proposed.  相似文献   

20.
The combined action of electric field (105–107 V · m?1) and light (380–580 nm, 80 W · m?2) activating the photoenergetic reaction of bacteriorhodopsin (BR) in dry films of purple membranes from Halobacterium halobium was studied. A new stimulating effect of the field on the BR412 intermediate accumulation in the normal photochromic cycle of BR570 has been observed. The formation of the product BR412 is supposed to be accompanied by specific rearrangements of certain charged, polar and polarizable groups in the BR pigment-protein matrix. Such an intrinsic polarization could be promoted by an external electric field, the displacement vector of those groups being oriented in the direction of the field. The dielectric polarization properties of the purple membranes have been demonstrated by electret-thermal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号