首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The genetic basis of seed setting was evaluated in seven clones of alfalfa selected under predominantly self-pollinating conditions. They were hand crossed in all possible combinations. Their compatibility was studied by the percentage of flowers forming pods and number of seeds per pod during crossing. The variances for GCA, SCA and reciprocal effects were significant for percentage of pod set with a narrow sense héritability of 64 %. This suggested maternal influence of clones on percent pod set, controlled primarily by additive genetic components. GCA was the only significant component for number of seeds per pod with a narrow sense heritability of 71%. There were wide differences between the clones in their relative magnitude of GCA, SCA and reciprocal effects for both traits used as compatibility indexes. Performance of the diallel crosses was judged by studying seed yield and its related characters, namely seeds per pod, dry matter per plant, frost resistance, plant vigor and plant height. Although GCA and SCA variances were significant for all characters, reciprocal differences in general were absent. The SCA values were very high as compared to GCA. Narrow sense heritability values were very low while broad sense heritability were much higher. This suggested that almost none of the variation was due to additive genetic components and all the variability is controlled by interactions of a digenic, trigenic and quadrigenic nature and heterzozygosity. Heterosis was evaluated by comparing the seed yield of single crosses with their mid-parent and high-parent, and very high values were observed. Thus selection of better genes may not be feasible and further improvement in selected clones may have to be brought about by utilization of various interactions and heterosis. An attempt was made to find combinations of characters that may be used for the selection of seed yield but none were found to be satisfactory.  相似文献   

2.
Analysis of quantitative trait loci (QTL) affecting complex traits is often pursued in single-cross experiments. For most purposes, including breeding, some assessment is desired of the generalizability of the QTL findings and of the overall genetic architecture of the trait. Single-cross experiments provide a poor basis for these purposes, as comparison across experiments is hampered by segregation of different allelic combinations among different parents and by context-dependent effects of QTL. To overcome this problem, we combined the benefits of QTL analysis (to identify genomic regions affecting trait variation) and classic diallel analysis (to obtain insight into the general inheritance of the trait) by analyzing multiple mapping families that are connected via shared parents. We first provide a theoretical derivation of main (general combining ability (GCA)) and interaction (specific combining ability (SCA)) effects on F(2) family means relative to variance components in a randomly mating reference population. Then, using computer simulations to generate F(2) families derived from 10 inbred parents in different partial-diallel designs, we show that QTL can be detected and that the residual among-family variance can be analyzed. Standard diallel analysis methods are applied in order to reveal the presence and mode of action (in terms of GCA and SCA) of undetected polygenes. Given a fixed experiment size (total number of individuals), we demonstrate that QTL detection and estimation of the genetic architecture of polygenic effects are competing goals, which should be explicitly accounted for in the experimental design. Our approach provides a general strategy for exploring the genetic architecture, as well as the QTL underlying variation in quantitative traits.  相似文献   

3.
M L Wayne  T F Mackay 《Genetics》1998,148(1):201-210
The rare alleles model of mutation-selection balance (MSB) hypothesis for the maintenance of genetic variation was evaluated for two quantitative traits, ovariole number and body size. Mutational variances (VM) for these traits, estimated from mutation accumulation lines, were 4.75 and 1.97 x 10(-4) times the environmental variance (VE), respectively. The mutation accumulation lines were studied in three environments to test for genotype x environment interaction (GEI) of new mutations; significant mutational GEI was found for both traits. Mutations for ovariole number have a quadratic relationship with competitive fitness, suggesting stabilizing selection for the trait; there is no significant correlation between mutations for body size and competitive fitness. Under MSB, the ratio of segregating genetic variance, VG, to mutational variance, VM, estimates the inverse of the selection coefficient against a heterozygote for a new mutation. Estimates of VG/VM for ovariole number and body size were both approximately 1.1 x 10(4). Thus, MSB can explain the level of variation, if mutations affecting these traits are under very weak selection, which is inconsistent with the empirical observation of stabilizing selection, or if the estimate of VM is biased downward by two orders of magnitude. GEI is a possible alternative explanation.  相似文献   

4.
Variances for general combining ability (GCA) and specific combining ability (SCA) and the relationship between mid-parental GCA and SCA effects were estimated for tree diameter (DBH) from a series of 20 sets of 6×6 half-diallel mating experiments in radiata pine, planted at ten sites across Australia. Significant SCA variance for DBH was almost equal to GCA variance for the combined analysis of all ten sites. The importance of SCA variance varied among sites, from non-significant to SCA variance accounting for all genetic variation among full-sib families. Significant SCA × site interaction was detected among the ten sites. A significant and positive correlation between mid-parental breeding values and best linear unbiased predictions of the SCA effects was observed. About a quarter of extra genetic gain is achievable through use of SCA variance if selection is based on the best breeding values. To fully exploit genetic gain from SCA variance in a deployment population, positive assortative matings are required for the best parents. It is estimated that the additional deployment gain of 46.0% for ten sites combined, or 52.9% for four sites combined that had significant GCA as well as SCA effects, were achievable relative to gain from GCA only, if all SCA variance within this breeding population was exploited. For a breeding population, selection for breeding values may be sufficient due to positive correlations between breeding values and SCA values. For a deployment population to capture more SCA genetic gain, it is preferable to make more pair-wise mating for parents with higher breeding values.Communicated by O. Savolainen  相似文献   

5.
K. A. Hughes 《Genetics》1997,145(1):139-151
To assess the genetic basis of sperm competition under conditions in which it occurs, I estimated additive, dominance, homozygous and environmental variance components, the effects of inbreeding, and the weighted average dominance of segregating alleles for two measures of sperm precedence in a large, outbred laboratory population. Both first and second male precedence show significant decline on inbreeding. Second male precedence demonstrates significant dominance variance and homozygous genetic variance, but the additive variance is low and not significantly different from zero. For first male precedence, the variance among homozygous lines is again significant, and dominance variance is larger than the additive variance, but is not statistically significant. In contrast, male mating success and other fitness components in Drosophila generally exhibit significant additive variance and little or no dominance variance. Other recent experiments have shown significant genotypic variation for sperm precedence and have associated it with allelic variants of accessory-gland proteins. The contrast between sperm precedence and other male fitness traits in the structure of quantitative genetic variation suggests that different mechanisms may be responsible for the maintenance of variation in these traits. The pattern of genetic variation and inbreeding decline shown in this experiment suggests that one or a few genes with major effects on sperm precedence may be segregating in this population.  相似文献   

6.
The degree of genetic control and the effects of cultural treatments on somatic embryogenesis (SE) in white spruce were investigated with material derived from six-parent diallel crosses, including reciprocals. Thirty zygotic embryos from both immature and mature cones of each family were cultured in media with either 2,4-D or Picloram immediately after the collection of cones and after 2 months of cold storage. There were significant differences in SE initiation between immature and mature explants, and fresh and cold-stored seeds, but there was no significant differences with culture media effect. Significant variances due to families and to family x treatment interactions were found. The mean percentage of explants that initiated SE in each family ranged from 3.3% to 54.6%, with an overall average of 30.5%. The partitioning of family variance revealed that 21.7% was due to general combining ability effects, 3.5% was due to maternal effects, and 5.5% was due to reciprocal effects, but that the specific combining ability (SCA) was negligible. Variance due to interactions of family x treatments collectively accounted for 32.6%, while the remaining 37.8% of variation was accounted for by random error. However, when comparing the responses obtained with the treatment combinations, the SE response for freshly excised immature embryo explants showed comparatively large SCA variance, whereas the SCA variance was very small in the other treatment combinations.  相似文献   

7.
The number of ovarioles of the Drosophila melanogaster ovary is a trait thought to be associated with female fecundity, and therefore is expected to be under strong natural selection. This hypothesis may be tested by examining patterns of genetic and environmental variation for ovariole number in natural populations, and by determining the association between ovariole number and fitness in isogenic lines derived from a natural population. We measured ovariole number, and competitive fitness and its components, for 48 homozygous chromosome 3 substitution lines in a standard inbred background; and body size in a sample of 15 chromosome 3 substitution lines. We found significant segregating genetic variation for ovariole number, with a broad-sense heritability (H2) of 0.403 and correspondingly high coefficients of genetic variation (CVC = 20.8) and residual variation (CVR = 25.3). Estimates of quantitative genetic parameters for body size (H2 = 0.191, CVG = 2.15, and CVR = 3.87) are similar to those previously reported for this trait. Although the isogenic chromosome 3 substitution lines varied significantly for components of fitness, there was no significant linear or quadratic association of ovariole number and body size with fitness. There was, however, highly significant sex × genotype interaction for fitness among these lines. This special case of genotype × environment interaction for fitness may contribute to the maintenance of genetic variation for fitness in natural populations.  相似文献   

8.
Environmental factors during juvenile growth such as temperature and nutrition have major effects on adult morphology and life-history traits. In Drosophila melanogaster, ovary size, measured as ovariole number, and body size, measured as thorax length, are developmentally plastic traits with respect to larval nutrition. Herein we investigated the genetic basis for plasticity of ovariole number and body size, as well the genetic basis for their allometric relationship using recombinant inbred lines (RILs) derived from a natural population in Winters, California. We reared 196 RILs in four yeast concentrations and measured ovariole number and body size. The genetic correlation between ovariole number and thorax length was positive, but the strength of this correlation decreased with increasing yeast concentration. Genetic variation and genotype-by-environment (G x E) interactions were observed for both traits. We identified quantitative trait loci (QTL), epistatic, QTL-by-environment, and epistatic-by-environment interactions for both traits and their scaling relationships. The results are discussed in the context of multivariate trait evolution.  相似文献   

9.
The objective of this study was to assess five cacao cultivars (selfs) and 20 hybrids with regard to their general-and specific-combining ability for yield components using method 1, model I, of the diallel analysis system. The selfings and the hybrids were obtained through controlled crossings, tested in the field in a random block design with four replications and plots containing 16 plants. The experiment was set up in the Centro de Pesquisas do Cacau, in Itabuna, Bahia, Brasil, in 1975. The characteristics studied were: the number of healthy and collected fruits per plant (NHFP and NCFP), the weight of humid seeds per plant and per fruit (WHSP and WHSF), and the percentage of diseased fruits per plant (PDFP), for 5 years (1986–1990). The F-test values, highly significant for general combining ability (GCA) and specific combining ability (SCA), demonstrated the existence of variability for both effects. However, the effects of SCA were greater than those of GCA, when compared in terms of the average squared effects. This condition held for the characteristics NHFP, NCFP and WHSP, which shows the relative importance of the non-additive genetic effects over the additive effects. The reciprocal effects did not show significance. Breeding methods which explore the additive portion of genetic variance should be employed for obtaining higher-yielding cacao and high seed weight. For this, the segregant populations should involve cultivars CEPEC 1, SIAL 169 and ICS 1. Combinations involving the cultivar ICS 1 presented the most favorable results for the characteristics WHSP and WHSF, where the hybrid SIAL 169 x ICS 1 and its reciprocal were outstanding.  相似文献   

10.
Evaluation of circulant partial diallel crosses in maize   总被引:1,自引:0,他引:1  
Summary The present study was conducted in maize (Zea mays L.) on crosses among 20 diverse parents. The materials were evaluated in four different environments for eight characters. Combining ability analysis was carried out following diallel and partial diallel crosses. The number of crosses per parent (s) varied from 3 to 19 and the results were studied to identify the critical value of s that would provide an adequate information with minimum resources. The S5 partial diallel was as good as the S19 for the detection of differences among general combining ability (GCA) effects. Even the S3 gave adequate information in the case of characters with high heritability. However, partial diallel analysis was less efficient in detecting the differences due to specific combining ability (SCA) effects. These results varied with environments, and characters with low heritability were more prone to misinterpretation. GCA effects showed fluctuations in partial diallel analysis which were more pronounced in S5 and S3, particularly for characters with low heritability. The average standard error of difference between GCA effects increased with a decrease in s, with a steep slope for s < 7. The partial diallel analysis was more efficient for the estimation of the variance component of GCA than for SCA, as the estimate of SCA was biased upwards. Estimates of broad sense heritability obtained from the partial diallels agreed with the full diallel analysis better than the narrow sense estimates. Smaller partial diallels gave erratic estimates of heritability, particularly for the characters with low heritability.  相似文献   

11.
A reproducible protocol for somatic embryogenesis (SE) induction in Eucalyptus globulus from mature zygotic embryos is available since 2002. However, for the use of SE in tree breeding programs, the frequency of SE initiation needs to be improved and controlled, and this was investigated in 13 open-pollinated (OP) families over three consecutive years. A diallel mating design with five parent trees was used to study genetic control of SE induction. Results showed that SE induction varies across E. globulus families and over the years of seed production tested. Somatic embryogenesis was initiated on explants from 84% of the OP families tested in 2002 and 100% of the families tested in 2003 and 2004. The year 2003 gave best results for percentage of induction and total number of somatic embryos produced. Results concerning genetic control showed that SE induction is under the control of additive genetic effects, as 22.0% of variation in SE initiation was due to general combining ability (GCA) effect, whereas 6.4% was due to maternal effects. Neither specific combining ability (SCA) nor reciprocal effects were significant.  相似文献   

12.
In this study, we ask two questions: (1) Is reproductive success independent of parental genetic distance in predominately selfing plants? (2) In the absence of early inbreeding depression, is there substantial maternal and/or paternal variation in reproductive success in natural populations? Seed yield in single pollinations and proportion of seeds sired in mixed pollinations were studied in genetically defined accessions of the predominately selfing plant Arabidopsis thaliana by conducting two diallel crosses. The first diallel was a standard, single pollination design that we used to examine variance in seed yield. The second diallel was a mixed pollination design that utilized a standard pollen competitor to examine variance in proportion of seeds sired. We found no correlation between reproductive success and parental genetic distance, and self-pollen does not systematically differ in reproductive success compared to outcross pollen, suggesting that Arabidopsis populations do not experience embryo lethality due to early-acting inbreeding or outbreeding depression. We used these data to partition the contributions to total phenotypic variation from six sources, including maternal contributions, paternal contributions and parental interactions. For seed yield in single pollinations, maternal effects accounted for the most significant source of variance (16.6 %). For proportion of seeds sired in mixed pollinations, the most significant source of variance was paternal effects (17.9 %). Thus, we show that population-level genetic similarities, including selfing, do not correlate with reproductive success, yet there is still significant paternal variance under competition. This suggests two things. First, since these differences are unlikely due to early-acting inbreeding depression or differential pollen viability, this implicates natural variation in pollen germination and tube growth dynamics. Second, this strongly supports a model of fixation of pollen performance genes in populations, offering a focus for future genetic studies in differential reproductive success.  相似文献   

13.
This study was conducted to determine the reciprocal effects for anther culture response in wheat (Triticum aestivum L.) using a set of 4 × 4 full diallel crosses. Both reciprocal and nuclear genetic effects were highly significant for anther culture response and useful for selection and breeding purposes. General combining ability (GCA) effects were predominant for all investigated anther culture traits. Also, significant differences for specific combining ability (SCA) effects were detected between reciprocal crosses. Although significant reciprocal differences for responding anther, callus number and green plant regeneration were recorded in some reciprocal crosses, there were no significant reciprocal differences for albino plant regeneration. The use of one parent as male or female could lead to change at the production of green plants from the F1 hybrids and screening of inbred lines for response to anther culture, without reciprocal effects, could decrease the utilization of breeding material.  相似文献   

14.
Summary Because seed size is often associated with survival and reproduction in plant populations, genetic variation for seed size may be reduced or eliminated by natural selection. To test this hypothesis we assessed genetic sources of variation in seed size in a population ofPhlox drummondii to determine whether genetic differences among seeds influence the size they attain. A diallel cross among 12 plants from a population at Bastrop, Texas, USA allowed us to partition variance in the mass of seeds among several genetic and parental effects. We found no evidence of additive genetic variance or dominance genetic variance for seed mass in the contribution of plants to their offspring. Extranuclear maternal effects accounted for 56% of the variance in seed mass. A small interaction was observed between seed genotype and maternal plant. Results of this study support theory that predicts little genetic variation for traits associated with fitness.  相似文献   

15.
Intralocus sexual conflict results from sexually antagonistic selection on traits shared by the sexes. This can displace males and females from their respective fitness optima, and negative intersexual correlations (rmf) for fitness are the unequivocal indicator of this evolutionary conflict. It has recently been suggested that intersexual fitness correlations can vary depending on the segregating genetic variation present in a population, and one way to alter genetic variation and test this idea is via inbreeding. Here, we test whether intersexual correlations for fitness vary with inbreeding in Drosophila simulans isolines reared under homogenous conditions. We measured male and female fitness at different times following the establishment of isofemale lines and found that the sign of the association between the two measures varied with time after initial inbreeding. Our results are consistent with suggestions that the type of genetic variation segregating within a population can determine the extent of intralocus sexual conflict and also support the idea that sexually antagonistic alleles segregate for longer in populations than alleles with sexually concordant effects.  相似文献   

16.
Drosophila kikkawai, which has colonized the Indian subcontinent in the recent past, exhibits geographical variations for five quantitative traits among eight Indian populations (8.29–32.7°N). Body weight, wing length, thorax length, abdominal bristles and ovariole number exhibit significant clinal variation with increase in latitude, while sternopleural bristles do not demonstrate such a trend. For the female sex, the slope values for body weight (2.25) and wing length (2.40) are higher but they are lower for thorax length (0.64) and ovariole number (0.51 per degree latitude). There is significant sexual dimorphism for the slope values only for body weight and thorax length suggesting simultaneous action of latitudinal selection pressure on these traits. However, the two sexes do not differ statistically in the latitudinal slope values for the wing length. A regression analysis of different traits on body weight implies correlated selection response on wing length and wing/thorax ratio while thorax length corresponds to changes in body size and does not differ in the two sexes. Regression analysis, on the basis of temperature-related climatic variables, evidence significantly higher association between all the five size-related traits and coefficient of variation of mean annual temperature (seasonal thermal amplitude; T cv), T min and relative humidity. Thus, genetic differentiation for quantitative traits in D. kikkawai are due to selective pressure from variable climatic conditions occurring on the Indian subcontinent.  相似文献   

17.
Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS) of Agaricus bisporus was studied through an incomplete set of diallel crosses to get insight in the heritability of BS and the combining ability of the parental lines used and, in this way, to estimate their breeding value. To this end nineteen homokaryotic lines recovered from wild strains and cultivars were inter-crossed in a diallel scheme. Fifty-one successful hybrids were grown under controlled conditions, and the BS of these hybrids was assessed. BS was shown to be a trait with a very high heritability. The results also showed that brown hybrids were generally less sensitive to bruising than white hybrids. The diallel scheme allowed to estimate the general combining ability (GCA) for each homokaryotic parental line and to estimate the specific combining ability (SCA) of each hybrid. The line with the lowest GCA is seen as the most attractive donor for improving resistance to bruising. The line gave rise to hybrids sensitive to bruising having the highest GCA value. The highest negative SCA possibly indicates heterosis effects for resistance to bruising. This study provides a foundation for estimating breeding value of parental lines to further study the genetic factors underlying bruising sensitivity and other quality-related traits, and to select potential parental lines for further heterosis breeding. The approach of studying combining ability in a diallel scheme was used for the first time in button mushroom breeding.  相似文献   

18.
Zhong D  Menge DM  Temu EA  Chen H  Yan G 《Genetics》2006,173(3):1337-1345
The yellow fever mosquito Aedes aegypti has been the subject of extensive genetic research due to its medical importance and the ease with which it can be manipulated in the laboratory. A molecular genetic linkage map was constructed using 148 amplified fragment length polymorphism (AFLP) and six single-strand conformation polymorphism (SSCP) markers. Eighteen AFLP primer combinations were used to genotype two reciprocal F2 segregating populations. Each primer combination generated an average of 8.2 AFLP markers eligible for linkage mapping. The length of the integrated map was 180.9 cM, giving an average marker resolution of 1.2 cM. Composite interval mapping revealed a total of six QTL significantly affecting Plasmodium susceptibility in the two reciprocal crosses of Ae. aegypti. Two common QTL on linkage group 2 were identified in both crosses that had similar effects on the phenotype, and four QTL were unique to each cross. In one cross, the four main QTL accounted for 64% of the total phenotypic variance, and digenic epistasis explained 11.8% of the variance. In the second cross, the four main QTL explained 66% of the variance, and digenic epistasis accounted for 16% of the variance. The actions of these QTL were either dominance or underdominance. Our results indicated that at least three new QTL were mapped on chromosomes 1 and 3. The polygenic nature of susceptibility to P. gallinaceum and epistasis are important factors for significant variation within or among mosquito strains. The new map provides additional information useful for further genetic investigation, such as identification of new genes and positional cloning.  相似文献   

19.
The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.  相似文献   

20.
Summary Twenty-one progenies of smooth bromegrass (Bromus inermis Leyss.) from a 7 X 7 half diallel cross, with their parents, were evaluated for three years at four locations in Alberta for the genetic variation of stability in expression of their annual yield. The linear response and deviation from linear response for each genotype were the two stability parameters considered, together with mean performance in the evaluation of each genotype. Four high yielding genotypes, namely 12, 13, 16, and 26, had general adaptability, while genotype 23 was especially suited to a poor environment. Combining ability analysis showed that general combining ability (GCA) and specific combining ability (SCA) were both important in the expression of yield. Inheritance of linear regression was controlled predominantly by GCA whereas both GCA and SCA were equally important in the expression of deviation. The presence of a substantial proportion of variability due to the additive genetic component in the linear response suggests that it should be possible to exploit this fraction of variability in developing high yielding stable cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号