首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have suggested that Australian long-eared bats (Nyctophilus) differ from northern-hemisphere bats with respect to their thermal physiology and patterns of torpor. To determine whether this is a general trait of Australian bats, we characterised the temporal organisation of torpor and quantified metabolic rates and body temperatures of normothermic and torpid Australian bats (Nyctophilus geoffroyi, 7 g and N. gouldi, 10 g) over a range of air temperatures and in different seasons. The basal metabolic rate of normothermic bats was 1.36 ± 0.17 ml g−1 h−1 (N. geoffroyi) and 1.22 ± 0.13 ml g−1 h−1 (N. gouldi), about 65% of that predicted by allometric equations, and the corresponding body temperature was about 36 °C. Below an air temperature of about 25 °C bats usually remained normothermic for only brief periods and typically entered torpor. Arousal from torpor usually occurred shortly after the beginning of the dark phase and torpor re-entry occurred almost always during the dark phase after normothermic periods of only 111 ± 48 min (N. geoffroyi) and 115 ± 66 min (N. gouldi). At air temperatures below 10 °C, bats remained torpid for more than 1 day. Bats that were measured overnight had steady-state torpor metabolic rates representing only 2.7% (N. geoffroyi) and 4.2% (N. gouldi) of the basal metabolic rate, and their body temperatures fell to minima of 1.4 and 2.3 °C, respectively. In contrast, bats measured entirely during the day, as in previous studies, had torpor metabolic rates that were up to ten times higher than those measured overnight. The steady-state torpor metabolic rate of thermoconforming torpid bats showed an exponential relationship with body temperature (r 2 = 0.94), suggesting that temperature effects are important for reduction of metabolic rate below basal levels. However, the 75% reduction of metabolic rate between basal metabolic rate and torpor metabolic rate at a body temperature of 29.3 °C suggests that metabolic inhibition also plays an important role. Torpor metabolic rate showed little or no seasonal change. Our study suggests that Australian Nyctophilus bats have a low basal metabolic rate and that their patterns of torpor are similar to those measured in bats from the northern hemisphere. The low basal metabolic rate and the high proclivity of these bats for using torpor suggest that they are constrained by limited energy availability and that heterothermy plays a key role in their natural biology. Accepted: 22 November 1999  相似文献   

2.
The link between environmental temperature, physiological processes and population fluctuations is a significant aspect of insect pest management. Here, we explore how thermal biology affects the population abundance of two globally significant pest fruit fly species, Ceratitis capitata (medfly) and C. rosa (Natal fruit fly), including irradiated individuals and those expressing a temperature sensitive lethal (tsl) mutation that are used in the sterile insect technique. Results show that upper and lower lethal temperatures are seldom encountered at the field sites, while critical minimum temperatures for activity and lower developmental thresholds are crossed more frequently. Estimates of abundance revealed that C. capitata are active year-round, but abundance declines markedly during winter. Temporal autocorrelation of average fortnightly trap captures and of development time, estimated from an integrated model to calculate available degree days, show similar seasonal lags suggesting that population increases in early spring occur after sufficient degree-days have accumulated. By contrast, population collapses coincide tightly with increasing frequency of low temperature events that fall below critical minimum temperatures for activity. Individuals of C. capitata expressing the tsl mutation show greater critical thermal maxima and greater longevity under field conditions than reference individuals. Taken together, this evidence suggests that low temperatures limit populations in the Western Cape, South Africa and likely do so elsewhere. Increasing temperature extremes and warming climates generally may extend the season over which these species are active, and could increase abundance. The sterile insect technique may prove profitable as climates change given that laboratory-reared tsl flies have an advantage under warmer conditions.  相似文献   

3.
1. 1. The thermal characteristics of Petrodromus tetradactylus, Elephantulus intufi and E. brachyrhynchus were investigated and compared with other elephant-shrews that occur in the southern African subregion.
2. 2. E. intufi and E. brachyrhynchus appear to have lower than expected basal metabolic rates (1.1185 ± 0.1623 and 0.9649 ± 0.1638 ml O2 g−1 h−1, respectively) and high, narrow thermoneutral zones, similar to other elephant-shrews investigated previously. In contrast P. tetradactylus has a basal metabolic rate (0.871 ± 0.027 ml O2 g−1 h−1) close to expected for body mass, and a broad, low thermoneutral zone.
3. 3. The thermal biology of macroscelids is discussed in terms of their distribution, microhabitat and body size.
  相似文献   

4.
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4 °C) and could tolerate a broader range of body temperatures (8.1–46.8 vs. 9.1–43.1 °C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21 °C to 33 °C, but decreased at 36 °C and 39 °C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout–vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.  相似文献   

5.
Summary This study examines the relationship between warm-up rate, body mass, metabolic rate, thermal conductance and normothermic body temperature in heterothermic mammals during arousal from torpor. Predictions based on the assumption that the energetic cost of arousal has been minimised are tested using data for 35 species. The observation that across-species warm-up rate correlates negatively with body mass is confirmed using a comparative technique which removes confounding effects due to the non-independence of species data due to shared common ancestry. Mean warm-up rate during arousal correlates negatively with basal metabolic rate and positively with the temperature difference through which the animal warms, having controlled for other factors. These results suggest that selection has operated to minimise the overall energetic, cost of warm-up. In contrast, peak warm-up rate during arousal correlates positively with peak metabolic rate during arousal, and negatively with thermal conductance, when body mass has been taken into account. These results suggest that peak warm-up rate is more sensitive to the fundamental processes of heat generation and loss. Although heterothermic marsupials have lower normothermic body temperatures and basal metabolic rates, marsupials and heterothermic eutherian mammals do not differ systematically in warm-up rate. Pre-flight warm-up rates in one group of endothermic insects, the bees, are significantly higher than predictions based on rates of arousal of a mammal of the same body mass.Abbreviations BMR basal metabolic rate - ICM independent comparisons method - MWR mean warm-up rate - PMR peak metabolic rate - PWR peak·warm-up rate - Tbactivity body temperature during activity - Tbtorpor body temperature during torpor - T arousal increase in body temperature during arousal  相似文献   

6.
1.
Field body temperatures (Tb's) of Chamaeleo chamaeleon in southwestern Spain averaged 28 °C in October and 30 °C in June. Slopes of regressions of Tb on Ta (ambient temperature at perch height) indicated that individuals were able to maintain a preferred body temperature of about 30 °C in June but not in October.  相似文献   

7.
1.
Eulamprus tytmpanum can attain mean selected temperatures achieved in the laboratory under field conditions, but the proportion of time at that temperature is restricted under natural conditions.  相似文献   

8.
Thermal biology of zebrafish (Danio rerio)   总被引:1,自引:0,他引:1  
Zebrafish has become one of the most important animal models in research. Most of the variables studied using zebrafish are influenced by water temperature. The objective of this review was to analyze the published data on the thermal biology of the zebrafish. The paper first provides a brief introduction to zebrafish ecology and thermal tolerance, and continues with a review of the influence of temperature on several physiological variables, including development, growth, metabolism, reproduction, behavior, circadian biology and toxicology. Although a number of papers have already studied the effects of temperature on the zebrafish biology, knowledge in this field is still scarce, especially compared with other model organisms such as the rat, and therefore further research should be encouraged.  相似文献   

9.
The threat of global warming has prompted numerous recent studies on the thermal tolerance of marine species. A widely used method to determine the upper thermal limit has been the Critical Thermal Maximum (CTMax), a dynamic method, meaning that temperature is increased gradually until a critical point is reached. This method presents several advantages over static methods, however, there is one main issue that hinders interpretation and comparison of CTMax results: the rate at which the temperature is increased. This rate varies widely among published protocols. The aim of the present work was to determine the effect of warming rate on CTMax values, using different animal groups. The influence of the thermal niche occupied by each species (intertidal vs subtidal) and habitat (intertidal vs subtidal) was also investigated. CTMax were estimated at three different rates: 1 °C min−1, 1 °C 30 min−1 and 1 °C h−1, in two species of crab, Eurypanopeus abbreviatus and Menippe nodifrons, shrimp Palaemon northropi and Hippolyte obliquimanus and fish Bathygobius soporator and Parablennius marmoreus. While there were significant differences in the effect of warming rates for some species, for other species warming rate produced no significant differences (H. obliquimanus and B. soporator). While in some species slower warming rates lead to lower CTMax values (P. northropi and P. marmoreus) in other species the opposite occurred (E. abbreviatus and M. nodifrons). Biological group has a significant effect with crabs' CTMax increasing at slower warming rates, which did not happen for shrimp and fish. Subtidal species presented lower CTMax, at all warming rates tested. This study highlights the importance of estimating CTMax values at realistic rates that species encounter in their environment and thus have an ecological value.  相似文献   

10.
Synthetic biology can be defined as the “repurposing and redesign of biological systems for novel purposes or applications, ” and the field lies at the interface of several biological research areas. This broad definition can be taken to include a variety of investigative endeavors, and successful design of new biological paradigms requires integration of many scientific disciplines including (but not limited to) protein engineering, metabolic engineering, genomics, structural biology, chemical biology, systems biology, and bioinformatics. This review focuses on recent applications of synthetic biology principles in three areas: (i) the construction of artificial biomolecules and biomaterials; (ii) the synthesis of both fine and bulk chemicals (including biofuels); and (iii) the construction of “smart” biological systems that respond to the surrounding environment.  相似文献   

11.
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.  相似文献   

12.
13.
Jens Nielsen 《FEBS letters》2009,583(24):3905-3913
Lipid metabolism is highly relevant as it plays a central role in a number of human diseases. Due to the highly interactive structure of lipid metabolism and its regulation, it is necessary to apply a holistic approach, and systems biology is therefore well suited for integrated analysis of lipid metabolism. In this paper it is demonstrated that the yeast Saccharomyces cerevisiae serves as an excellent model organism for studying the regulation of lipid metabolism in eukaryotes as most of the regulatory structures in this part of the metabolism are conserved between yeast and mammals. Hereby yeast systems biology can assist to improve our understanding of how lipid metabolism is regulated.  相似文献   

14.
Thermal biology, and therefore energy acquisition and survival, of ectotherms can be affected by diel and seasonal patterns of environmental temperatures. Galápagos Lava Lizards live in seasonal environments that are characterized by a warm and wet period when reproductive activity is maximal, and cooler and drier period. With the use of radiotelemetric techniques to record lizard surface temperatures (Ts), we studied the thermal ecology of the San Cristóbal Lava Lizard (Microlophus bivittatus) during both the warm and cool seasons over two years. During the diel activity period and when operative temperatures exceeded Tset-min, at least on rock faces without canopy, 52% or less of the Ts observations fell within the laboratory-determined Tset range (36–40 °C). Therefore, lizards may have avoided very warm midday temperatures in shaded microhabitats and the lag times in changes in Ts values occurred as operative temperatures rose rapidly during late morning warming phase. Lizards effectively thermoregulated during a year with moderate warm season temperatures and during a cool season that was unseasonably warm. In contrast, lizards less effectively thermoregulated during the warmest and coolest years of the study. We did not detect intersexual differences in thermoregulation although males may thermoregulate less effectively than do females during the cool season although we were unable to detect significant differences using our nonparametric statistical techniques.  相似文献   

15.
The origin of allometric scaling laws in biology   总被引:1,自引:0,他引:1  
The empirical rules relating metabolic rate and body size are described in terms of (i) a scaling exponent, which refers to the ratio of the fractional change in metabolic rate to a change in body size, (ii) a proportionality constant, which describes the rate of energy expenditure in an organism of unit mass. This article integrates the chemiosmotic theory of energy transduction with the methods of quantum statistics to propose a molecular mechanism which, in sharp contrast to competing models, explains both the variation in scaling exponents and the taxon-specific differences in proportionality constants. The new model is universal in the sense that it applies to unicellular organisms, plants and animals.  相似文献   

16.
Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges.  相似文献   

17.
Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.  相似文献   

18.
We conducted laboratory experiments to determine the lethal temperatures of the shoots of dried Bryum argenteum and to determine how this restoration species responds to extreme environments. We specifically assessed changes in gene expression levels in the shoots of dried B. argenteum plants that were subjected to sudden heat shock (control (20 ± 2°C), 80°C, 100°C, 110°C or 120°C) followed by exposure to heat for an additional 10, 20, 30 or 60 min. After they were exposed to heat, the samples were placed in wet sand medium, and their survival and regeneration abilities were evaluated daily for 56 days. The results showed that lethal temperatures significantly reduced the shoot regeneration potential, delayed both shoot and protonemal emergence times and reduced the protonemal emergence area. In addition, the expression of nine genes (HSF3, HSP70, ERF, LEA, ELIP, LHCA, LHCB, Tr288 and DHN) was induced by temperature stress, as assessed after 30 min of exposure. Additionally, a new thermal tolerance level for dried B. argenteum – 120°C for 20 min – was determined, which was the highest temperature recorded for this moss; this tolerance exceeded the previous record of 110°C for 10 min. These findings help elucidate the survival mechanism of this species under heat shock stress and facilitate the recovery and restoration of destroyed ecosystems.  相似文献   

19.
Contrasting patterns of radiation in African and Australian Restionaceae   总被引:3,自引:0,他引:3  
The floras of the Mediterranean-climate areas of southern Africa and southwestern Australia are remarkably species rich. Because the two areas are at similar latitudes and in similar positions on their respective continents, they have probably had similar Cenozoic climatic histories. Here we test the prediction that the evolution of the species richness in the two areas followed a similar temporal progression by comparing the rates of lineage accumulation for African and Australian Restionaceae. Restionaceae (Poales) are typical and often dominant elements in the fynbos vegetation of the Cape Floristic Region of southern Africa and the kwongan vegetation of the Southwestern Floristic Province of Western Australia. The phylogeny of the family was estimated from combined datasets for rbcL and trnL-F sequences and a large morphological dataset; these datasets are largely congruent. The monophyly of Restionaceae is supported and a basal division into an African clade (approximately 350 species) and an Australian clade (146 species) corroborated. There is also support for a futher subdivision of these two large sister-clades, but the terminal resolution within the African clade is very weak. Fossil pollen records provided a minimum age of the common ancestor of Australian and African Restionaceae as 64-71 million years ago, and this date was used to calibrate a molecular clock. A molecular clock was rejected by a likelihood ratio test; therefore, rate changes between the lineages were smoothed using nonparametric rate smoothing. The rate-corrected ages were used to construct a plot of lineages through time. During the Palaeogene the Australian lineage diversity increased consistent with the predictions of the constant birthrate model, while the African lineage diversity showed a dramatic increase in diversification rate in the Miocene. Incomplete sampling obscures the patterns in the Neogene, but extending the trends to the modern extant diversity suggests that this acceleration in the speciation rate continued in the African clade, whereas the Australian clade retained a constant diversification rate. The substantial morphological and anatomical similarity between the African and Australian Restionaceae appear to preclude morphological innovations as possible explanations for the intercontinental differences. Most likely these differences are due to the greater geographical extent and ecological variation in temperate Australia than temperate Africa, which might have provided refugia for basal Restionaceae lineages, whereas the more mountainous terrain of southern Africa might have provided the selective regimes for a more rapid, recent speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号