首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A Sphingobium sp. strain isolated from radioactive solid waste management site (RSMS) completely degraded 7.98 g/L of tributyl phosphate (TBP) from TBP containing suspensions in 3 days. It also completely degraded 20 mM dibutyl phosphate (DBP) within 2 days. The strain tolerated high levels of TBP and showed excellent stability with respect to TBP degradation over several repeated subcultures. On solid minimal media or Luria Bertani media supplemented with TBP, the RSMS strain showed a clear zone of TBP degradation around the colony. Gas chromatography and spectrophotometry analyses identified DBP as the intermediate and butanol and phosphate as the products of TBP biodegradation. The RSMS strain utilized both TBP and DBP as the sole source of carbon and phosphorous for its growth. The butanol released was completely utilized by the strain as a carbon source thereby leaving no toxic residue in the medium. Degradation of TBP or DBP was found to be suppressed by high concentration of glucose which also inhibited TBP or DBP dependent growth. The results highlight the potential of Sphingobium sp. strain RSMS for bioremediation of TBP and for further molecular investigation.  相似文献   

2.
利用微生物对抗生素类污染物进行生物降解是目前的研究热点之一。寻找能高效降解抗生素的微生物是该类研究的重要前提。本研究以莫能菌素为唯一碳源,从莫能菌素污染的鸡粪中分离出一株能高效降解莫能菌素的菌株DM-1。根据菌落形态学特征、生理生化特性和16S r RNA基因系统发育分析,对该菌株进行种属鉴定;利用柱后衍生化法的高效液相色谱(high performance liquid chromatography,HPLC)检测DM-1对莫能菌素的降解效率;并对DM-1的降解条件进行了优化。结果表明,筛选到的莫能菌素降解菌DM-1为不动杆菌属(Acinetobacter)的细菌,命名为鲍曼不动杆菌DM-1(Acinetobacter baumannii DM-1);该菌株在10 mg/L莫能菌素的无机盐液体培养基中,避光培养28 d后,莫能菌素的降解率为87.51%,对照组仅为8.57%;菌株DM-1对莫能菌素降解的最优条件为:p H 7.0、温度30℃,最适初始添加莫能菌素浓度为50 mg/L;本研究结果表明菌株DM-1在莫能菌素污染环境的生物修复方面具有良好的应用前景。  相似文献   

3.
Pyridine and pyridine based products are of major concern as environmental pollutants due to their recalcitrant, persistent, toxic and teratogenic nature. In this study, we describe biodegradation of pyridine by an isolated consortium/strain under aerobic condition. Batch experiment results reveal that at lower initial pyridine concentrations (1-20 mg l(-1)), almost complete degradation was observed whereas at higher concentration (30-50 mg l(-1)), the degradation efficiency was dropped significantly. This may be due to inhibitory effect of pyridine at higher concentrations. The value of decay and yield coefficient was also determined. Furthermore, the bio-augmentation of isolated consortium/strain into the activated sludge consortium in different quantity has been also done and the effect of bio-augmentation on degradation has been studied. The results reveal that as the quantity of bio-augmentation increases, the degradation of pyridine increases. At 25% bio-augmentation, complete degradation of 20 mg l(-1) of pyridine can be achieved within 96 h of incubation. Thus, the study concluded that the bio-augmentation of the isolated consortium/strain into the sludge enhances the pyridine degradation efficiency of the biomass.  相似文献   

4.
AIM: To isolate gamma-hexachlorocyclohexane (HCH)-degrading bacteria from contaminated soil and characterize the metabolites formed and the genes involved in the degradation pathway. METHODS AND RESULTS: A bacterial strain Xanthomonas sp. ICH12, capable of biodegrading gamma- HCH was isolated from HCH-contaminated soil. DNA-colony hybridization method was employed to detect bacterial populations containing specific gene sequences of the gamma-HCH degradation pathway. linA (dehydrodehalogenase), linB (hydrolytic dehalogenase) and linC (dehydrogenase) from a Sphingomonas paucimobilis UT26, reportedly possessing gamma-HCH degradation activity, were used as gene probes against isolated colonies. The isolate was found to grow and utilize gamma-HCH as the sole carbon and energy source. The 16S ribosomal RNA gene sequence of the isolate resulted in its identification as a Xanthomonas species, and we designated it as strain ICH12. During the degradation of gamma-HCH by ICH12, formation of two intermediates, gamma-2,3,4,5,6-pentachlorocyclohexene (gamma-PCCH), and 2,5-dichlorobenzoquinone (2,5-DCBQ), were identified by gas chromatography-mass spectrometric (GC-MS) analysis. While gamma-PCCH was reported previously, 2,5-dichlorohydroquinone was a novel metabolite from HCH degradation. CONCLUSIONS: A Xanthomonas sp. for gamma-HCH degradation from a contaminated soil was isolated. gamma-HCH was utilized as sole source of carbon and energy, and the degradation proceeds by successive dechlorination. Two degradation products gamma-PCCH and 2,5-DCBQ were characterized, and the latter metabolite was not known in contrasts with the previous studies. The present work, for the first time, demonstrates the potential of a Xanthomonas species to degrade a recalcitrant and widespread pollutant like gamma-HCH. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the isolation and characterization of a novel HCH-degrading bacterium. Further results provide an insight into the novel degradation pathway which may exist in diverse HCH-degrading bacteria in contaminated soils leading to bioremediation of gamma-HCH.  相似文献   

5.
6.
Methylammonium uptake by Rhizobium sp. strain 32H1   总被引:6,自引:9,他引:6       下载免费PDF全文
We present evidence that methylammonium is transported into cowpea Rhizobium sp. strain 32H1 cells by a membrane carrier whose natural substrate is ammonium. After growth in low (0.2%) oxygen, which is necessary for nitrogen fixation by these cells, respiring rhizobial cells took up [14C]methylammonium to high intracellular levels. Cells grown in atmospheric (21%) oxygen did not take up methylammonium. Uptake (transport plus metabolism) was maximal in cells harvested in the early stationary phase of batch culture and had a distinct pH optimum of 6.5 to 7.0. Uptake was inhibited by metabolic poisons that dissipate the proton motive force or inhibit ATP synthesis. Inhibition of uptake by ammonium and the counterflow phenomenon indicated that ammonium and methylammonium share a transport carrier. Of the methylammonium taken up, about 15% was accumulated to intracellular levels 20 times higher than those in the medium; most of the methylammonium was metabolized to gamma-N-methylglutamine.  相似文献   

7.
Establishment of symbiosis between certain host plants and nitrogen-fixing bacteria ("rhizobia") depends on type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS). Here, we report that the open reading frame y4zC of strain NGR234 encodes a novel rhizobial type 3 effector, termed NopT (for nodulation outer protein T). Analysis of secreted proteins from NGR234 and T3SS mutants revealed that NopT is secreted via the T3SS. NopT possessed autoproteolytic activity when expressed in Escherichia coli or human HEK 293T cells. The processed NopT exposed a glycine (G50) to the N terminus, which is predicted to be myristoylated in eukaryotic cells. NopT with a point mutation at position C93, H205, or D220 (catalytic triad) showed strongly reduced autoproteolytic activity, indicating that NopT is a functional protease of the YopT-AvrPphB effector family. When transiently expressed in tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. Arabidopsis plants transformed with nopT showed chlorotic and necrotic symptoms, indicating a cytotoxic effect. Inoculation experiments with mutant derivatives of NGR234 indicated that NopT affected nodulation either positively (Phaseolus vulgaris cv. Yudou No. 1; Tephrosia vogelii) or negatively (Crotalaria juncea). We suggest that NopT-related polymorphism may be involved in evolutionary adaptation of NGR234 to particular host legumes.  相似文献   

8.
Conjugal transfer of the pAG408 suicide vector from E. coli S 17.1 to Pseudomonas sp. cells able to consume phenol yielded transconjugates brightly luminescing under UV illumination. It was shown that tagging of the Pseudomonas sp. cells with the gfp gene did not affect their ability to consume phenol. The change of the population density of the tagged bacteria after their introduction to soil was studied. The potential of the resulting bacterial strain in remediation of phenol-polluted soils is discussed.  相似文献   

9.
Conjugal transfer of the pAG408 suicide vector from E. coli S17-1 to Pseudomonas sp. cells able to consume phenol yielded transconjugates brightly luminescing under UV illumination. It was shown that tagging of the Pseudomonas sp. cells with the gfp gene did not affect their ability to consume phenol. The change of the population density of the tagged bacteria after their introduction to soil was studied. The potential of the resulting bacterial strain in remediation of phenol-polluted soils is discussed.  相似文献   

10.
11.
Experiments were conducted to provide data on the effectiveness of bioaugmentation in the removal of pyridine and quinoline from different wastewaters. A pyridine-degrading bacterial strain (Paracoccus sp. BW001) and a quinoline-degrading strain (Pseudomonas sp. BW003) were isolated from the activated sludge of a coking wastewater treatment plant. In this study, a consortium of these two bacterial strains was used as inoculum to simultaneously degrade pyridine and quinoline in three types of wastewaters: sterile synthetic, domestic, and industrial. In addition, variation of the bacterial community structures during degradation was monitored by denaturing gradient gel electrophoresis and amplicon length heterogeneity polymerase chain reaction techniques. The results of our experiments indicate that pyridine and quinoline can be removed efficiently using this inoculum but that the degradation process results in the production of ammonium as a by-product. Also, in the two actual wastewaters investigated, we observed that several autochthonous strains of bacteria in both the domestic and industrial wastewater were tolerant of pyridine and quinoline and grew rapidly.  相似文献   

12.
Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors.  相似文献   

13.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C.  相似文献   

14.
The effect of the presence of supplementary glucose or acetate on the growth and pyridine-degrading activity of freely suspended and calcium-alginate-immobilizedPimelobacter sp. was investigated. Although the supplementary carbon sources could be degraded simultaneously with pyridine,Pimelobacter sp. exhibited a preference for pyridine over supplementary carbon sources. Thus, the pyridine-degrading activity of the freely suspended cells was not decreased significantly by the addition of either glucose (1.5–6 mM) or acetate (6–24 mM) to the pyridine (6–24 mM). In the semi-continuous immobilized cell culture, immobilized cells also exhibited a preference for pyridine over supplementary carbon sources and did not switch their substrate preference throughout the culture. Owing to a high cell concentration, the volumetric pyridine degradation rate at 24 mM pyridine in the immobilized cell culture was approximately six times higher than that in the freely suspended cell culture. Furthermore, the immobilized cells could be reused 16 times without losing their pyridine-degrading activity during the culture period tested. Taken together, the use of immobilizedPimelobacter sp. for the degradation of pyridine is quite feasible because of the preference for pyridine over supplementary carbon sources, the high volumetric pyridine degradation rate, and the reusability of immobilized cells.  相似文献   

15.
A consortium of the newly isolated bacterial strains Arthrobacter sp. strain G1 and Ralstonia sp. strain H1 utilized 4-fluorocinnamic acid for growth under aerobic conditions. Strain G1 converted 4-fluorocinnamic acid into 4-fluorobenzoic acid and used the two-carbon side chain for growth, with some formation of 4-fluoroacetophenone as a dead-end side product. In the presence of strain H1, complete mineralization of 4-fluorocinnamic acid and release of fluoride were obtained. Degradation of 4-fluorocinnamic acid by strain G1 occurred through a β-oxidation mechanism and started with the formation of 4-fluorocinnamoyl-coenzyme A (CoA), as indicated by the presence of 4-fluorocinnamoyl-CoA ligase. Enzymes for further transformation were detected in cell extract, i.e., 4-fluorocinnamoyl-CoA hydratase, 4-fluorophenyl-β-hydroxy propionyl-CoA dehydrogenase, and 4-fluorophenyl-β-keto propionyl-CoA thiolase. Degradation of 4-fluorobenzoic acid by strain H1 proceeded via 4-fluorocatechol, which was converted by an ortho-cleavage pathway.  相似文献   

16.
17.
The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, inactivation of the TTSS modifies the host range of the mutant so that it includes the improved Glycine max variety McCall. To assess the impact of individual TTSS-secreted proteins on symbioses with legumes, various attempts were made to identify nop genes. Amino-terminal sequencing of peptides purified from gels was used to characterize NopA, NopL, and NopX, but it failed to identify SR3, a TTSS-dependent product of USDA257. By using phage display and antibodies that recognize SR3, the corresponding protein of NGR234 was identified as NopP. NopP, like NopL, is an effector secreted by the TTSS of NGR234, and depending on the legume host, it may have a deleterious or beneficial effect on nodulation or it may have little effect.  相似文献   

18.

A novel strain capable of degrading triclosan was isolated from the acclimated activated sludge and identified to be Dyella sp. WW1 based on 16S rDNA analysis. The effect of initial concentration of triclosan (0.2, 1, 5, and 10 mg/L), temperature (15, 25, and 35 °C), pH (5, 7, and 9), and additional carbon source on the degradation of triclosan was investigated in a mineral medium. The results showed that Dyella sp. WW1 can use triclosan as sole carbon source and degrade it when initial triclosan concentration was in the range of 0.2–10 mg/L. The optimal condition for Dyella sp. WW1 to degrade triclosan was 15 °C and pH 7. TOC removal efficiency was more than 90%. Dyella sp. WW1 can degrade 3,5-dichloro-4-hydrobenzoic via co-metabolism in the presence of triclosan, but cannot degrade trimethoprim, sulfamethoxazole, carbamazepine, and diclofenac. In the presence of glucose, Dyella sp. WW1 firstly utilized glucose to synthesize the biomass and then degraded triclosan. When triclosan concentration decreased to an extent (1.2 mg/L in this study), Dyella sp. WW1 started to use glucose again. The wastewater components did not significantly affect the activity of Dyella sp. WW1 to degrade triclosan. During the biodegradation process, six metabolite products were identified. Based on the metabolites, two degradation pathways were tentatively proposed. In summary, Dyella sp. WW1 could be used for degrading triclosan in the real wastewater.

  相似文献   

19.
20.
Dechlorination of Atrazine by a Rhizobium sp. Isolate   总被引:4,自引:0,他引:4       下载免费PDF全文
A Rhizobium sp. strain, named PATR, was isolated from an agricultural soil and found to actively degrade the herbicide atrazine. Incubation of PATR in a basal liquid medium containing 30 mg of atrazine liter(sup-1) resulted in the rapid consumption of the herbicide and the accumulation of hydroxyatrazine as the only metabolite detected after 8 days of culture. Experiments performed with ring-labeled [(sup14)C]atrazine indicated no mineralization. The enzyme responsible for the hydroxylation of atrazine was partially purified and found to consist of four 50-kDa subunits. Its synthesis in PATR was constitutive. This new atrazine hydrolase demonstrated 92% sequence identity through a 24-amino-acid fragment with atrazine chlorohydrolase AtzA produced by Pseudomonas sp. strain ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号