首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations on the microbial life in several coastal solar salterns have revealed the presence of novel organisms and synthesis of unusual molecules active in extreme conditions which might be useful in different biotechnological industries. Biodiversity of heterotrophic aerobic bacteria isolated from two salterns, Pomorie salterns and Burgas salterns located at Burgas Bay, Black Sea coast, Bulgaria, as well as ability of the isolates to synthesize biotechnologically valuable compounds were investigated. The results revealed high taxonomic and metabolic bacterial diversity—we isolated 20 morphologically different moderately halophilic and two halotolerant strains affiliated with 11 species from eight genera referred to the phyla Proteobacteria, Firmicutes, and Actinobacteria. Gram-negative bacteria belonged to the genera Halomonas, Chromohalobacter, Salinivibrio, Cobetia, and Nesiotobacter, and gram-positive strains were representatives of the genera Virgibacillus, Salinicoccus, and Brevibacterium. All isolates were found to be alkalitolerant, and 41% of them were psychrotolerant. The strains degraded nine of the tested 18 substrates; polygalacturonase, catalase, phytase, and lipase producers were predominant. This is the first reported detection of xanthan lyase, gellan lyase, arabinase, and phytase activities in halophilic bacteria. Nine of the strains belonging to five different genera were found to produce exopolysaccharides (EPS). The highest level of EPS was observed in Chromohalobacter canadensis strain 28. More than a half of the strains displayed antimicrobial activity against one to five test bacteria and yeasts. The present study is the first report on halophilic bacteria isolated from salterns at the Black Sea coast indicating that the investigated area is an untapped resource of halophilic bacteria with biotechnological potential.  相似文献   

2.
A total of 17 species from 43 isolates were obtained through serial dilutions of soil samples isolated from one of the man-made solar salterns located in Ban Laem district of Phetchaburi province, Thailand. Soil analysis of the sample revealed high salinity and moisture content, slight alkalinity and low amounts of nitrogen, total organic carbon and organic matter in the habitat. Morphological analysis was performed on all isolates, and molecular identification and phylogenetic analysis were carried out only on the halophilic fungi isolated. Six halophilic fungi, belonging to four species, were identified among the isolates, including five strains of Aspergillus genus [Aspergillus flavus, A. gracilis, A. penicillioides (2 strains) and A. restrictus]. One species was found to be a yeast, namely, Sterigmatomyces halophilus, which was the most frequent isolate found among the halophilic fungi. All other isolates were halotolerant fungi. Characterization of the halophilic fungal isolates showed that they were best adapted to conditions of 10–15 % NaCl (w/v), slight alkalinity (pH 7.0–7.5) and a temperature range of 30–35 °C.  相似文献   

3.
Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely halophilic bacteria that had ecological relevance seemed to be easier to culture than their archaeal counterparts.  相似文献   

4.
Iran has many hypersaline environments, both the permanent and seasonal ones. One of the seasonal hypersaline lakes in the central desert zone is Aran-Bidgol Lake in which microbial diversity has not been characterized, thus the potential usage of this microbial community in biotechnology remained unknown. In this study, screening the halophilic hydrolytic enzyme-producing bacteria from different areas of this lake led to isolation of 61 gram-positive and 22 gram-negative moderately halophilic bacteria. These bacterial isolates were shown to produce a wide variety of hydrolytic enzymes including DNase, inulinase, amylase, lipase, pectinase, protease, chitinase, pullulanase, cellulase, and xylanase. The most common enzymes were DNase and inulinase in gram-positive bacteria, lipase in gram-negative bacteria, and pullulanase and cellulase in gram-positive cocci. Interestingly, combined hydrolytic activates were observed in some isolates. According to their phenotypic characteristics and comparative partial 16S rRNA sequence analysis, the moderately halophilic strains belonged to the genera Halobacillus, Thalassobacillus, Bacillus, Salinicoccus, Idiomarina, Salicola, and Halomonas.  相似文献   

5.
This study was undertaken to identify exopolysaccharide-producing bacteria gathered from 18 hypersaline habitats. Phenotypic studies performed with 134 isolates revealed the majority of them to be Gram-negative rods with respiratory metabolism, belonging to the genus Halomonas. A numerical analysis of the 114 phenotypic data showed that at an 80% similarity level most of the strains (121) could be grouped into six phenotypic groups. Phenon A included 25 new isolates and the reference strain of Halomonas eurihalina, and phenon B was formed by 77 new isolates and Halomonas maura. Phenon C was also related to H. maura although to a lesser extent than strains in group B. Three phena (D, E, and F) could not be grouped with any of the reference strains and may represent new taxa; their G + C contents and DNA-DNA hybridization data corroborated this hypothesis. Results of this work proved that the most abundant halophilic species EPS producer in hypersaline habitats was H. maura, followed by H. eurihalina.  相似文献   

6.
Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related to each other and belonged to the genus Desulfonatronovibrio, which, so far, included only obligately alkaliphilic members found exclusively in soda lakes. The isolates utilized formate, H2 and pyruvate as electron donors and sulfate, sulfite and thiosulfate as electron acceptors. In contrast to the described species of the genus Desulfonatronovibrio, the salt lake isolates could only tolerate high pH (up to pH 9.4), while they grow optimally at a neutral pH. They belonged to the moderate halophiles growing between 0.2 and 2 M NaCl with an optimum at 0.5 M. On the basis of their distinct phenotype and phylogeny, the described halophilic SRB are proposed to form a novel species within the genus Desulfonatronovibrio, D. halophilus (type strain HTR1T = DSM24312T = UNIQEM U802T).  相似文献   

7.
Relationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coral Pocillopora meandrina was investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of the Alphaproteobacteria, a Pseudoalteromonas species of the Gammaproteobacteria, and a Synechococcus species of the Cyanobacteria phylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination of P. meandrina planulae by fluorescence in situ hybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains of Pseudoalteromonas and Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade and Synechococcus did not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.  相似文献   

8.
Two moderately halophilic and psychrotolerant new Mycoplasma species were isolated from common cephalopods. Three strains were isolated in pure culture from two individual European flying squid (Todarodes sagittatus), and two individual octopuses (Octopus vulgaris). The strains showed optimal growth at 25 °C and a salinity of 3% (w/v) NaCl. Molecular analyses revealed that the isolates belonged to two new, but phylogenetically related species, divergent from all previously described Mollicutes, representing the first marine isolates of the class, and also the first Mycoplasma strains for which NaCl requirement has been demonstrated. A genome search against all available marine metagenomes and 16S rRNA gene databases indicated that these two species represent a novel non-free-living marine lineage of Mollicutes, specifically associated with marine animals. Morphology and physiology were compatible with other members of this group, and genomic and phenotypic analyses demonstrated that these organisms represent two novel species of the genus Mycoplasma, for which the names Mycoplasma marinum sp. nov. and Mycoplasma todarodis sp. nov. are proposed; the type strains are PET (DSM 105487T, CIP 111404T) and 5HT (DSM 105,488T, CIP 111405T), respectively.  相似文献   

9.
Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 103 colony forming units g?1. The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100 % similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9–C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.  相似文献   

10.
The moderately halophilic bacterium Halomonas eurihalina strain F2-7, able to produce an exopolysaccharide, was found to contain two plasmids named pVE1 and pVE2, of 8.1 and 5.8 kb respectively. We found no evidence for the involvement of these plasmids in the expression of the mucoid phenotype. Restriction maps of both plasmids were constructed. Southern hybridization revealed similarities between them but excluded the existence of sequences homologous to other plasmids isolated from the Halomonas species. Neither pVE1 nor pVE2 displayed any homology with other plasmids isolated from moderate halophiles. The occurrence of similar plasmids in other strains of Halomonas eurihalina, isolated from hypersaline soils, has been detected. These small plasmids may be useful for the development of cloning vectors for moderately halophilic bacteria.  相似文献   

11.
Lysis of Halobacteria in Bacto-Peptone by Bile Acids   总被引:3,自引:0,他引:3       下载免费PDF全文
All tested strains of halophilic archaebacteria of the genera Halobacterium, Haloarcula, Haloferax, and Natronobacterium lysed in 1% Bacto-Peptone (Difco) containing 25% NaCl, whereas no lysis was observed with other strains belonging to archaebacteria of the genera Halococcus, Natronococcus, and Sulfolobus, methanogenic bacteria, and moderately halophilic eubacteria. Substances in Bacto-Peptone which caused lysis of halobacteria were purified and identified as taurocholic acid and glycocholic acid. High-performance liquid chromatography analyses of peptones revealed that Bacto-Peptone contained nine different bile acids, with a total content of 9.53 mg/g, whereas much lower amounts were found in Peptone Bacteriological Technical (Difco) and Oxoid Peptone. Different kinds of peptones can be used to distinguish halophilic eubacteria and archaebacteria in mixed cultures from hypersaline environments.  相似文献   

12.
A total of 45 moderately halophilic bacteria was isolated from sediment and saline water collected from the Weihai Solar Saltern (China). The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The halophilic strains were tested for their antimicrobial activity. Cytotoxicity assay was performed to determine which of the halophilic strains could inhibit proliferation of human hepatocellular carcinoma Bel 7402 cells. Our results showed that all of the isolated 45 strains displayed moderately halophilic characteristics. Phylogenetic analysis indicated that 17 of the isolated strains were related to the phylum Firmicutes and belonged to four genera, Bacillus, Halobacillus, Planococcus and Salinicoccus. The other strains identified as genus of Halomonas belonged to phylum γ-Proteobacteria. Most of the halophilic bacterial strains showed potent activities against Gram-positive bacteria, human pathogenic fungi and plant pathogenic fungi. In addition, the crude extracts from 14 halophilic bacterial strains showed cytotoxic activity against tumor cells Bel 7402, and five of them showed remarkable activities with IC50 less than 40 μg ml−1. Our results suggest that the moderately halophilic bacteria may be developed as promising sources for the discovery of novel bioactive substances.  相似文献   

13.
Culture dependent phenotypic characterization and 16S rDNA based phylogenetic analyses were applied to study the aerobic halophilic bacterial population present in the Pulicat brackish-water Lake of India. Five different media were employed for isolation of bacteria. A total of 198 morphotypes were recovered, purified and screened for salt tolerance in nutrient agar medium amended with 5–25% NaCl. Based on 16S rDNA restriction fragment length polymorphism analysis with three restriction endonucleases, 51 isolates tolerant to 5% or more NaCl were grouped into 29 clusters. Phylogenetic analysis using 16S rRNA gene sequences revealed that 29 strains could further be allocated into two clades: 19 to Firmicutes and 10 to γ-Proteobacteria. Firmicutes included low G+C Gram-positive bacteria related to family Bacillaceae, which included five genera Bacillus, Virgibacillus, Rummelibacillus, Alkalibacillus and Halobacillus. Another genera included in Firmicutes was Salimicrobium halophilum. In the γ-Proteobacteria group, all the isolates belonged to one genus Halomonas, represented by six different species Halomonas salina, H. shengliensis, H. salifodinae, H. pacifica, H. aquamarina and H. halophila. Most of the isolates exhibited cellulase, xylanase, amylase and protease activities.  相似文献   

14.

Background

The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find.

Objective

As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms.

Results

Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities.

Conclusion

The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions turn suitable; therefore, these microorganisms must be regarded as a threat to the wood.  相似文献   

15.
Salinibacter is a genus of red, extremely halophilic Bacteria. Thus far the genus is represented by a single species, Salinibacter ruber, strains of which have been isolated from saltern crystallizer ponds in Spain and on the Balearic Islands. Both with respect to its growth conditions and its physiology, Salinibacter resembles the halophilic Archaea of the order Halobacteriales. We have designed selective enrichment and isolation techniques to obtain Salinibacter and related red extremely halophilic Bacteria from different hypersaline environments, based on their resistance to anisomycin and bacitracin, two antibiotics that are potent inhibitors of the halophilic Archaea. Using direct plating on media containing bacitracin, we found Salinibacter-like organisms in numbers between 1.4×103 and 1.4×106ml−1 in brines collected from the crystallizer ponds of the salterns in Eilat, Israel, being equivalent to 1.8–18% of the total colony counts obtained on identical media without bacitracin. A number of strains from Eilat were subjected to a preliminary characterization, and they proved similar to the type strain of S. ruber. We also report here the isolation and molecular detection of Salinibacter-like organisms from an evaporite crust on the bottom of salt pools at the Badwater site in Death Valley, CA. These isolates and environmental 16S rRNA gene sequences differ in a number of properties from S. ruber, and they may represent a new species of Salinibacter or a new related genus. Guest Editor: John M. Melack Saline Waters and their Biota  相似文献   

16.
Lake Vida is a large, permanently ice-covered lake in the Victoria Valley of the McMurdo Dry Valleys, Antarctica and is unique among Dry Valley lakes because it is ice-sealed, with an ice-cover of nearly 19 m. Enrichment cultures of melt-water from Lake Vida 15.9 m ice yielded five pure cultures of aerobic, heterotrophic bacteria. Of these, one strain grew at −8°C and the four others at −4°C. All isolates were either halotolerant or halophilic, with two strains capable of growth at 15% NaCl. Phylogenetic analysis revealed the Lake Vida isolates to be Gammaproteobacteria, related to species of Psychrobacter and Marinobacter. This is the first report of pure cultures of bacteria from Lake Vida, and the isolates displayed a phenotype consistent with life in a cold hypersaline environment.  相似文献   

17.
《Mycological Research》2006,110(6):713-724
Melanized yeast-like meristematic fungi are characteristic inhabitants of highly stressed environments and are rare eukaryotic extremophiles. Therefore, they are attractive organisms for studies of adaptations. In this study we compared two meristematic species of the genus Trimmatostroma on media of differing water potentials isolated from distinct water-stressed environments: T. salinum from the hypersaline water of a solar saltern, and T. abietis from a marble monument in Crimea. The morphology and melanization of both isolates in response to sodium chloride-induced water stress were investigated by means of light and electron microscopy. We describe and compare the colony form and structure, ultrastructure, and degree of cell-wall melanization of both species in reaction to salinity and to inhibited melanin synthesis. The halophilic T. salinum responded to changed salinity conditions on the level of individual cell ultrastructure and degree of cell wall melanization, whereas the xerophilic rock-inhabiting T. abietis responded with modification of its colony structure. Surprisingly, both the halophilic and the xerophilic Trimmatostroma species were able to adapt to hypersaline growth conditions, although their growth patterns show distinct adaptation of each species to their natural ecological niches.  相似文献   

18.
The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.  相似文献   

19.
Phenol is a toxic aromatic compound used or produced in many industries and as a result a common component of industrial wastewaters. Phenol containing waste streams are frequently hypersaline and therefore require halophilic microorganisms for efficient biotreatment without dilution. In this study three halophilic bacteria isolated from different saline environments and identified as Halomonas organivorans, Arhodomonas aquaeolei and Modicisalibacter tunisiensis were shown to be able to grow on phenol in hypersaline media containing 100 g/L of total salts at a concentration of 3 mM (280 mg/L), well above the concentration found in most waste streams. Genes encoding the aromatic dioxygenase enzymes catechol 1,2 dioxygenase and protocatechuate 3,4-dioxygenase were present in all strains as determined by PCR amplification using primers specific for highly conserved regions of the genes. The gene for protocatechuate 3,4-dioxygenase was cloned from the isolated H. organivorans and the translated protein was evaluated by comparative protein sequence analysis with protocatechuate 3,4-dioxygenase proteins from other microorganisms. Although the analysis revealed a wide range of sequence divergence among the protocatechuate 3,4-dioxygenase family, all of the conserved domain amino acid structures identified for this enzyme family are identical or conservatively substituted in the H. organivorans enzyme.  相似文献   

20.
The brine shrimp, Artemia is the dominant macrozooplankton present in many hypersaline environments. Artemia urmiana is the only macroscopic organism in Urmia Salt Lake (Iran), and the high salinity of the lake makes it a suitable environment for halophilic archaea too. Because of common environment for Artemia and extreme halophiles; this investigation is concentrated on studying the relationship between Artemia and halophilic archaea in Urmia Lake. In this study first the procedure of arhaea isolation was done. Then, isolated strains were sub-cultured and DNA was extracted and amplified by PCR using specific primers for amplifying archaeal 16S rRNA. The amplified archeal DNA fragments were purified, and sequenced. 16S rRNA sequences were compared to known sequences using the NCBI BLAST program. Sequences relating to Halorubrum, Haloarcula and Halobacterium species were identified in Urmia Salt Lake water and Artemia adults and the phylogenetic tree of different species was constructed. Only Halorubrum species were present in association with Artemia. They belong to Halobacteriaceae family of archeae which are isolated from different salt lakes in different parts of world and we could show their existence in adult Artemia, another organism living in hypersaline enviroments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号