首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
近年来,越来越多的实验结果表明,表观遗传因子,如DNA甲基化、小RNA、组蛋白修饰等在杂种优势形成中起到重要作用,然而对于这些表观遗传因子在F。中遗传调控方式的认识仍很有限.本实验室先前工作曾以拟南芥C24和Ler两种生态型及其正反交子一代为材料,运用新一代测序方法获得该杂交组合中DNA甲基化及小RNA单碱基分辨率的全基因组图谱.本文进一步对这批数据中的等位基因DNA甲基化水平进行分析,区分DNA甲基化遗传过程中的顺式与反式调控方式,并发现这两种调控方式均有重要的贡献.研究发现,siRNA与DNA甲基化的两种调控方式有密切联系,尤其在DNA甲基化的反式调控中,Fl中DNA甲基化变化程度越大,该区域内siRNA富集程度越强,二者可能存在某种调控机制.通过等位基因表观遗传组的分析研究杂交过程中DNA甲基化和小RNA遗传调控的规律,为更好地理解杂种优势机制提供了帮助.  相似文献   

2.
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia.  相似文献   

3.
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance.DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.  相似文献   

4.
5.
6.
7.
8.
9.
Kuhn DT  Sprey TE 《Genetics》1987,115(2):277-281
Pattern regulation of malic enzyme (ME) distribution in D. melanogaster/D. simulans (mel/sim) hybrid eye-antennal discs was investigated. Both cis- and trans-regulation of the spatial distribution pattern was observed within the eye portion of the disc complex. D. simulans possesses gene(s) that operate in trans in the hybrids to suppress ME staining along the morphogenetic furrow, a region that always stains in D. melanogaster. ME structural genes of both species were expressed in cis within the ommatidial preclusters and clusters of the hybrids. Malic enzyme was not expressed elsewhere in the eye disc of either species. Restoration of the D. melanogaster furrow pattern element occurred in partial hybrids that were homozygous for the D. melanogaster 3R where the structural gene resides. Therefore, a dominant gene(s) in the D. simulans 3R suppresses the D. melanogaster furrow pattern, while a recessive gene(s) in the D. melanogaster 3R restores the pattern when the trans-suppressor is removed. These conclusions agree with those found for regulation of aldehyde oxidase distribution in D. melanogaster/D. simulans hybrid wing discs.  相似文献   

10.
11.
Inter- or intraspecific hybridization is the first step in transferring exogenous traits to the germplasm of a recipient crop. One of the complicating factors is the occurrence of epigenetic modifications of the hybrids, which in turn can change their gene expression and phenotype. In this study we present an analysis of epigenome changes in rice hybrids that were obtained by crossing rice cultivars, most of them of indica type and Thai origin. Comparing amplified fragment length polymorphism (AFLP) fingerprints of twenty-four cultivars, we calculated Nei’s indexes for measuring genetic relationships. Epigenetic changes in their hybrids were established using methylation-sensitive AFLP fingerprinting and transposon display of the rice transposable elements (TEs) Stowaway Os-1 and Mashu, leading to the question whether the relationship between parental genomes is a predictor of epigenome changes, TE reactivation and changes in TE methylation. Our study now reveals that the genetic relationship between the parents and DNA methylation changes in their hybrids is not significantly correlated. Moreover, genetic distance correlates only weakly with Mashu reactivation, whereas it does not correlate with Stowaway Os-1 reactivation. Our observations also suggest that epigenome changes in the hybrids are localized events affecting specific chromosomal regions and transposons rather than affecting the genomic methylation landscape as a whole. The weak correlation between genetic distance and Mashu methylation and reactivation points at only limited influence of genetic background on the epigenetic status of the transposon. Our study further demonstrates that hybridizations between and among specific japonica and indica cultivars induce both genomic DNA methylation and reactivation/methylation change in the Stowaway Os-1 and Mashu transposons. The observed epigenetic changes seem to affect the transposons in a clear manner, partly driven by stochastic processes, which may account for a broader phenotypic plasticity of the hybrids. A better understanding of the epigenome changes leading to such transposon activation can lead to the development of novel tools for more variability in future rice breeding.  相似文献   

12.
13.
With the goal of studying epigenetic alterations in fibrolamellar hepatocellular carcinoma (FLC) and establish an associated DNA methylation signature, we analyzed LINE-1 methylation in a cohort of FLC and performed next-generation sequencing of DNA methylation in a training set of pure-FLCs and non-cirrhotic hepatocellular carcinomas (nc-HCC). DNA methylation was correlated with gene expression. Furthermore, we established and validated an epigenetic signature differentiating pure-FLC from other HCCs. LINE-1 methylation correlated with shorter recurrence-free survival and overall survival in resected pure-FLC patients. Unsupervised clustering using CG sites located in islands distinguished pure-FLC from nc-HCC. Major DNA methylation changes occurred outside promoters, mainly in gene bodies and intergenic regions located in the vicinity of liver developmental genes (i.e., SMARCA4 and RXRA). Partially methylated domains were more prone to DNA methylation changes. Furthermore, we identified several putative tumor suppressor genes (e.g., DLEU7) and oncogenes (e.g., DUSP4). While ∼70% of identified gene promoters gaining methylation were marked by bivalent histone marks (H3K4me3/H3K27me3) in embryonic stem cells, ∼70% of those losing methylation were marked by H3K4me3. Finally, we established a pure FLC DNA methylation signature and validated it in an independent dataset. Our analysis reveals a distinct epigenetic signature of pure FLC as compared to nc-HCC, with DNA methylation changes occurring in the vicinity of liver developmental genes. These data suggest new options for targeting FLC based on cancer epigenome aberrations.  相似文献   

14.
Genomic imprinting is an epigenetic process by which specific gene regions are marked by the male and the female germ lines by histone modifications and DNA methylation, so that only the paternal allele or only the maternal allele of a gene is active. Genomic imprints are erased in primordial germ cells, newly established during later stages of germ cell development and stably inherited through somatic cell divisions during postzygotic development. Defects in imprint erasure, establishment or maintenance result in aberrant epigenetic patterns and expression profiles and can cause specific diseases. Imprinting defects can occur spontaneously without any DNA sequence change (primary imprinting defect) or as the result of a mutation in a cis-regulatory element or a trans-acting factor (secondary imprinting defect). The distinction between primary and secondary imprinting defects is important for assessing the risk of recurrence in affected families.  相似文献   

15.
Phenotypic variation among individuals in a population can be due to DNA sequence variation in protein coding regions or in regulatory elements. Recently, many studies have indicated that mutations in regulatory elements may be the major cause of phenotypic evolution. However, the mechanisms for evolutionary changes in gene expression are still not well understood. Here, we studied the relative roles of cis and trans regulatory changes in Saccharomyces cerevisiae cells to cope with heat stress. It has been found that the expression level of ~ 300 genes was induced at least two fold and that of ~ 500 genes was repressed at least two fold in response to heat shock. From the former set of genes, we randomly selected 65 genes that showed polymorphism(s) between the BY and RM strains for pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to the expression divergence between BY and RM. Our data indicated that the expression divergence between BY and RM was mainly due to trans regulatory variations under either the normal condition or the heat stress condition. However, the relative contribution of trans regulatory variation was decreased from 76.9% to 61.5% after the heat shock stress. These results indicated that the cis regulatory variation may play an important role in the adaption to heat stress. In our data, 43.1% (28 genes) of the 65 genes showed the same trend of cis or trans variation effect after the heat shock stress, 35.4% (23 genes) showed an increased cis variation effect and 21.5% (14 genes) showed an increased trans variation effect after the heat shock stress. Thus, our data give insights into the relative roles of cis and trans variations in response to heat shock in yeast.  相似文献   

16.
17.
DNA methylation is an important epigenetic mark. In plants, de novo DNA methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. Researchers have previously inferred that a flowering regulator, MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE, is involved in non-CG methylation at several RdDM targets, suggesting a role of FVE in RdDM. However, whether and how FVE affects RdDM genome-wide is not known. Here, we report that FVE is required for DNA methylation at thousands of RdDM target regions. In addition, dysfunction of FVE significantly reduces 24-nucleotide siRNA accumulation that is dependent on factors downstream in the RdDM pathway. By using chromatin immunoprecipitation and sequencing (ChIP-seq), we show that FVE directly binds to FVE-dependent 24-nucleotide siRNA cluster regions. Our results also indicate that FVE may function in RdDM by physically interacting with RDM15, a downstream factor in the RdDM pathway. Our study has therefore revealed that FVE, by associating with RDM15, directly regulates DNA methylation and siRNA accumulation at a subset of RdDM targets.  相似文献   

18.

Key message

Assessment of chromosomal distribution of modified histones and 5-methylcytosine shown that there are diversification of chromosomal types among species of Brachiaria and its interspecific hybrids.

Abstract

Histone post-translational modifications and DNA methylation are epigenetic processes that are involved in structural and functional organization of the genome. This study compared the chromosomal distribution of modified histones and 5-methylcytosine (5-mCyt) in species and interspecific hybrids of Brachiaria with different ploidy levels and reproduction modes. The relation between H3K9me2 and 5-mCyt was observed in the nucleolus organizer region, centromeric central domain and pericentromeric region. H3K4me2 was detected in euchromatic domains, mainly in the terminal chromosomal regions. Comparison of chromosomal distribution among species and hybrids showed greater variation of chromosomal types for the H3K9me2 in B. decumbens (tetraploid and apomictic species) and the 963 hybrid, while, for the H3K4me2, the variation was higher in B. brizantha and B. decumbens (tetraploid and apomictic species) and 963 hybrid. The chromosome distribution of 5-mCyt was similar between B. brizantha and B. decumbens, which differ from the distribution observed in B. ruziziensis (diploid and sexual species). Significant alterations in DNA methylation were observed in the artificially tetraploidized B. ruziziensis and in the interspecific hybrids, possibly as result of hybridization and polyploidization processes. The monitoring of histone modifications and DNA methylation allowed categorizing nuclear and chromosomal distribution of these epigenetic marks, thus contributing to the knowledge of composition and structure of the genome/epigenome of Brachiaria species and hybrids. These data can be useful for speciation and genome evolution studies in genus Brachiaria, and represent important markers to explore relationships between genomes.
  相似文献   

19.
Primordial germ cells (PGCs) sequentially induce specific genes required for their development. We focused on epigenetic changes that regulate PGC-specific gene expression. mil-1, Blimp1, and Stella are preferentially expressed in PGCs, and their expression is upregulated during PGC differentiation. Here, we first determined DNA methylation status of mil-1, Blimp1, and Stella regulatory regions in epiblast and in PGCs, and found that they were hypomethylated in differentiating PGCs after E9.0, in which those genes were highly expressed. We used siRNA to inhibit a maintenance DNA methyltransferase, Dnmt1, in embryonic stem (ES) cells and found that the flanking regions of all three genes became hypomethylated and that expression of each gene increased 1.5- to 3-fold. In addition, we also found 1.5- to 5-fold increase of the PGC genes in the PGCLCs (PGC-like cells) induced form ES cells by knockdown of Dnmt1. We also obtained evidence showing that methylation of the regulatory region of mil-1 resulted in 2.5-fold decrease in expression in a reporter assay. Together, these results suggested that DNA demethylation does not play a major role on initial activation of the PGC genes in the nascent PGCs but contributed to enhancement of their expression in PGCs after E9.0. However, we also found that repression of representative somatic genes, Hoxa1 and Hoxb1, and a tissue-specific gene, Gfap, in PGCs was not dependent on DNA methylation; their flanking regions were hypomethylated, but their expression was not observed in PGCs at E13.5. Their promoter regions showed the bivalent histone modification in PGCs, that may be involved in repression of their expression. Our results indicated that epigenetic status of PGC genes and of somatic genes in PGCs were distinct, and suggested contribution of epigenetic mechanisms in regulation of the expression of a specific gene set in PGCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号