首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CTLA-4 (CD152) engagement can down-regulate T cell activation and promote the induction of immune tolerance. However, the strategy of attenuating T cell activation by engaging CTLA-4 has been limited by sharing of its natural ligands with the costimulatory protein CD28. In the present study, a CTLA-4-specific single-chain Ab (scFv) was developed and expressed on the cell surface to promote selective engagement of this regulatory molecule. Transfectants expressing anti-CTLA-4 scFv at their surface bound soluble CTLA-4 but not soluble CD28. Coexpression of anti-CTLA-4 scFv with anti-CD3epsilon and anti-CD28 scFvs on artificial APCs reduced the proliferation and IL-2 production by resting and preactivated bulk T cells as well as CD4+ and CD8+ T cell subsets. Importantly, expression of anti-CTLA-4 scFv on the same cell surface as the TCR ligand was essential for the inhibitory effects of CTLA-4-specific ligation. CTLA-4-mediated inhibition of tyrosine phosphorylation of components of the proximal TCR signaling apparatus was similarly dependent on coexpression of TCR and CTLA-4 ligands on the same surface. These findings support a predominant role for CTLA-4 function in the modification of the proximal TCR signal. Using T cells from DO11.10 and 2C TCR transgenic mice, negative regulatory effects of selective CTLA-4 ligation were also demonstrated during the stimulation of Ag-specific CD4+ and CD8+ T cells by MHC/peptide complexes. Together these studies demonstrate that selective ligation of CTLA-4 using a membrane-bound scFv results in attenuated T cell responses only when coengaged with the TCR during T cell/APC interaction and define an approach to harnessing the immunomodulatory potential of CTLA-4-specific ligation.  相似文献   

2.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

3.
The balance of T-cell proliferation, anergy and apoptosis is central to immune function. In this regard, co-receptor CTLA-4 is needed for the induction of anergy and tolerance. One central question concerns the mechanism by which CTLA-4 can induce T-cell non-responsiveness without a concurrent induction of antigen induced cell death (AICD). In this study, we show that CTLA-4 activation of the phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. CTLA-4 ligation induced PI 3K activation as evidenced by the phosphorylation of PKB/AKT that in turn inactivated GSK-3. The level of activation was similar to that observed with CD28. CTLA-4 induced PI 3K and AKT activation also led to phosphorylation of the pro-apoptotic factor BAD as well as the up-regulation of BcL-XL. In keeping with this, CD3/CTLA-4 co-ligation prevented apoptosis under the same conditions where T-cell non-responsiveness was induced. This effect was PI 3K and PKB/AKT dependent since inhibition of these enzymes under conditions of anti-CD3/CTLA-4 co-ligation resulted in cell death. Our findings therefore define a mechanism by which CTLA-4 can induce anergy (and possibly peripheral tolerance) by preventing the induction of cell death.  相似文献   

4.
In this study, we examined in vitro the role of CTLA-4 costimulation in the polarization of naive CD4+ T cells toward the Th1 subset. When CTLA-4 costimulation was blocked by the inclusion of anti-CTLA-4 Fab in cultures during priming of naive CD4+ T cells with anti-CD3 in the presence of splenic adherent cells, they were polarized toward the Th2 subset. Conversely, the engagement of CTLA-4 with immobilized anti-CTLA-4 or with CD80-P815 cells polarized naive CD4+ T cells costimulated with anti-CD3 and anti-CD28 toward the Th1 subset. The CTLA-4 costimulation during priming augmented TGF-beta1 mRNA accumulation in naive CD4+ T cells, and the inclusion of anti-TGF-beta in cultures for priming suppressed the effect of CTLA-4 costimulation on the Th1 polarization. The addition of low doses of TGF-beta1 in cultures for priming of naive CD4+ T cells enhanced the production of Th1 cytokines upon secondary stimulation, although Th2 cytokine production was not affected by the doses of TGF-beta1. The CTLA-4 costimulation was also shown to suppress IL-4 production of naive CD4+ T cells upon priming. These results indicate that the costimulation against CTLA-4 drives polarization of naive CD4+ T cells toward the Th1 subset independent of IL-12 through, at least in part, the enhancement of TGF-beta1 production, and it also hampers Th2 subset differentiation by affecting IL-4 production of naive CD4+ T cells.  相似文献   

5.
6.
ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement   总被引:32,自引:0,他引:32  
We investigated the relationship between ICOS, CD28, CTLA-4, and IL-2 to gain a better understanding of this family of costimulatory receptors in the immune response. Using magnetic beads coated with anti-CD3 and varying amounts of anti-ICOS and anti-CTLA-4 Abs, we show that CTLA-4 ligation blocks ICOS costimulation. In addition to inhibiting cellular proliferation, CTLA-4 engagement prevented ICOS-costimulated T cells from producing IL-4, IL-10, and IL-13. Both an indirect and direct mechanism of CTLA-4's actions were examined. First, CTLA-4 engagement on resting cells was found to indirectly block ICOS costimulation by interferring with the signals needed to induce ICOS cell surface expression. Second, on preactivated cells that had high levels of ICOS expression, CTLA-4 ligation blocked the ICOS-mediated induction of IL-4, IL-10, and IL-13, suggesting an interference with downstream signaling pathways. The addition of IL-2 not only overcame both mechanisms, but also greatly augmented the level of cellular activation suggesting synergy between ICOS and IL-2 signaling. This cooperation between ICOS and IL-2 signaling was explored further by showing that the minimum level of IL-2 produced by ICOS costimulation was required for T cell proliferation. Finally, exogenous IL-2 was required for sustained growth of ICOS-costimulated T cells. These results indicate that stringent control of ICOS costimulation is maintained initially by CTLA-4 engagement and later by a requirement for exogenous IL-2.  相似文献   

7.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

8.
To examine the role of CD28 and CTLA-4 in Th cell differentiation, we used a novel microsphere-based system to compare the effects of CD28 ligation by Ab or CD80/CD86. One set of beads was prepared by coating with anti-CD3 and anti-CD28 Ab. Another set of beads was prepared by immobilizing anti-CD3 and murine CD80-Ig fusion protein or murine CD86-Ig fusion protein on the beads. The three sets of beads were compared in their effects on the ability to activate and differentiate splenic CD4 T cells. When purified naive CD4(+) cells were stimulated in vitro, robust proliferation of similar magnitude was induced by all three sets of beads. When cytokine secretion was examined, all bead preparations induced an equivalent accumulation of IL-2. In contrast, there was a marked difference in the cytokine secretion pattern of the Th2 cytokines IL-4, IL-10, and IL-13. The B7-Ig-stimulated cultures had high concentrations of Th2 cytokines, whereas there were low or undetectable concentrations in the anti-CD28-stimulated cultures. Addition of anti-CTLA-4 Fab augmented B7-mediated IL-4 secretion. These studies demonstrate that B7 is a critical and potent stimulator of Th2 differentiation, and that anti-CD28 prevents this effect.  相似文献   

9.
CD28 provides a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell activation, cytokine production, and clonal expansion. We have recently shown that CD28 directly regulates progression of T lymphocytes through the cell cycle. Although a number of signaling pathways have been linked to the TCR/CD3 and to CD28, it is not known how these two receptors cooperate to induce cell cycle progression. Here, using cell-permeable pharmacologic inhibitors of phosphatidylinositol 3-hydroxykinase (PI3K) and mitogen-activated protein kinase kinase (MEK1/2), we show that cell cycle progression of primary T lymphocytes requires simultaneous activation of PI3K- and MEK1/2-dependent pathways. Decreased abundance of cyclin-dependent kinase inhibitor p27(kip1), which requires simultaneous TCR/CD3 and CD28 ligation, was dependent upon both MEK and PI3K activity. Ligation of TCR/CD3, but not CD28 alone, resulted in activation of MEK targets extracellular signal-related kinase 1/2, whereas ligation of CD28 alone was sufficient for activation of PI3K target protein kinase B (PKB; c-Akt). CD28 ligation alone was also sufficient to mediate inactivating phosphorylation of PKB target glycogen synthase kinase-3 (GSK-3). Moreover, direct inactivation of GSK-3 by LiCl in the presence of anti-CD3, but not in the presence of anti-CD28, resulted in down-regulation of p27(kip1), hyperphosphorylation of retinoblastoma tumor suppressor gene product, and cellular proliferation. Thus, inactivation of the PI3K-PKB target GSK-3 could substitute for CD28 but not for CD3 signals. These results show that the PI3K-PKB pathway links CD28 to cell cycle progression and suggest that p27(kip1) integrates mitogenic MEK- and PI3K-dependent signals from TCR and CD28 in primary T lymphocytes.  相似文献   

10.
Although CTLA-4 (CD152) has potent inhibitory effects on T cell function, the signaling events affected by this coreceptor remain to be fully defined. Mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) act as crucial regulators of multiple aspects of cell function. Ab ligation studies have reported an inhibitory effect of CTLA-4 on TCR-induced ERK and JNK activation. In this study, we have re-examined the specificity of CTLA-4 inhibition of MAPKs by using natural ligand with ex vivo-purified CD4(+) T cells deficient in CD80 and CD86 (double knockout), or CTLA-4, CD80, and CD86 (triple knockout). Under these conditions, CTLA-4 ligation was found to up-regulate and sustain JNK activation, while inhibiting ERK activity. At the same time, JNK activation could not account for CTLA-4 induction of TGF-beta production. Our findings demonstrate that CTLA-4 cosignaling is more complex than previously appreciated, with an ability to differentially regulate members of the MAPK family in T cells.  相似文献   

11.
Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4) initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt). In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response.  相似文献   

12.
Dendritic cells are believed to play an essential role in regulating the balance between immunogenic and tolerogenic responses to mucosal Ags by controlling T cell differentiation and activation via costimulatory and coinhibitory signals. The CD28/CTLA-4-CD80/CD86 signaling pathway appears to be one of the most important regulators of T cell responses but its exact role in responses to orally administered proteins remains to be elucidated. In the present study, the involvement of the CD28/CTLA-4-CD80/CD86 costimulatory pathway in the induction of allergic sensitization and oral tolerance to peanut proteins was investigated. In both an established C3H/HeOuJ mouse model of peanut hypersensitivity and an oral tolerance model to peanut, CD28/CTLA-4-CD80/CD86 interactions were blocked using the fusion protein CTLA-4Ig. To examine the relative contribution of CD80- and CD86-mediated costimulation in these models, anti-CD80 and anti-CD86 blocking Abs were used. In the hypersensitivity model, CTLA-4Ig treatment prevented the development of peanut extract-induced cytokine responses, peanut extract-specific IgG1, IgG2a, and IgE production and peanut extract-induced challenge responses. Blocking of CD80 reduced, whereas anti-CD86 treatment completely inhibited, the induction of peanut extract-specific IgE. Normal tolerance induction to peanut extract was found following CTLA-4Ig, anti-CD86, or anti-CD80 plus anti-CD86 treatment, whereas blockade of CD80 impaired the induction of oral tolerance. We show that CD28/CTLA-4-CD80/CD86 signaling is essential for the development of allergic responses to peanut and that CD86 interaction is most important in inducing peanut extract-specific IgE responses. Additionally, our data suggest that CD80 but not CD86 interaction with CTLA-4 is crucial for the induction of low dose tolerance to peanut.  相似文献   

13.
Activation of APC via CD40-CD40 ligand pathway induces up-regulation of costimulatory molecules such as B7 and production of IL-12. Interaction between B7 on APC and CD28 on naive T cells is necessary for priming the T cells. On the other hand, interaction between B7 on APC and CTLA-4 on activated T cells transduces a negative regulatory signal to the activated T cells. In the present study, we attempted to generate tumor-specific CTL by s.c. administration of antigenic peptides encapsulated in multilamellar liposomes (liposomal peptide vaccine) with anti-CD40 mAb and/or anti-CTLA-4 mAb. Liposomal OVA257-264 and anti-CD40 mAb or anti-CTLA-4 mAb were administrated to C57BL/6 mice and the splenocytes were cocultured with OVA257-264 for 4 days. The splenic CD8+ T cells showed a significant cytotoxicity against EL4 cells transfected with cDNA of OVA. In addition, administration of both anti-CD40 and anti-CTLA-4 mAb enhanced the CTL responses. Considerable CTL responses were induced in MHC class II deficient mice by the same procedure. This finding indicated that CTL responses could be generated even in the absence of Th cells. When BALB/c mice were immunized with pRL1a peptide that are tumor-associated Ag of RLmale symbol1 leukemia cells using the same procedure, significant CTL responses were induced and prolonged survival of the BALB/c mice was observed following RLmale symbol1 inoculation. These results demonstrate that anti-CD40 mAb and anti-CTLA-4 mAb function as immunomodulators and may be applicable to specific cancer immunotherapy with antitumor peptide vaccine.  相似文献   

14.
CD4+CD25+ T cells play a pivotal role in immunological homeostasis by their capacity to exert immunosuppressive activity. However, the mechanism by which these cells function is still a subject for debate. We previously reported that surface (membrane) TGF-beta produced by CD4+CD25+ T cells was an effector molecule mediating suppressor function. We now support this finding by imaging surface TGF-beta on Foxp3+CD4+CD25+ T cells in confocal fluorescence microscopy. Then, using a TGF-beta-sensitive mink lung epithelial cell (luciferase) reporter system, we show that surface TGF-beta can be activated to signal upon cell-cell contact. Moreover, if such TGF-beta signaling is blocked in an in vitro assay of CD4+CD25+ T cell suppression by a specific inhibitor of TGF-betaRI, suppressor function is also blocked. Finally, we address the role of CTLA-4 in CD4+CD25+ T cell suppression, showing first that whereas anti-CTLA-4 does not block in vitro suppressor function, it does complement the blocking activity of anti-TGF-beta. We then show with confocal fluorescence microscopy that incubation of CD4+CD25+ T cells with anti-CTLA-4- and rB7-1/Fc-coated beads results in accumulation of TGF-beta at the cell-bead contact site. This suggests that CTLA-4 signaling facilitates TGF-beta-mediated suppression by intensifying the TGF-beta signal at the point of suppressor cell-target cell interaction.  相似文献   

15.
SHIP-1 negatively regulates the PI3K pathway in hematopoietic cells and has an emerging role in T lymphocyte biology. PI3K and SHIP can regulate cell migration in leukocytes, particularly in neutrophils, although their role in T cell migration has been less clear. Therefore, we sought to explore the role of SHIP-1 in human CD4(+) T lymphocyte cell migration responses to chemoattractants using a lentiviral-mediated expression system and a short hairpin RNA approach. Silencing of SHIP-1 leads to increased basal phosphorylation of protein kinase B/Akt and its substrate GSK3β, as well as an increase in basal levels of polymerized actin, suggesting that SHIP-1 might regulate changes in the cytoskeleton. Accordingly, silencing of SHIP-1 led to loss of microvilli and ezrin/radixin/moesin phosphorylation, which could not be rescued by the PI3K inhibitor Ly294002. There were striking morphological changes, including a loss of microvilli projections, which mirrored changes in wild type cells after stimulation with the chemokine CXCL11. There was no defect in directional T cell migration toward CXCL11 in the SHIP-1-silenced cells but, importantly, there was a defect in the overall basal motility of SHIP-1 knockdown cells. Taken together, these results implicate SHIP-1 as a key regulator of basal PI3K signaling in human CD4(+) T lymphocytes with important phosphatase-independent actions, which together are key for maintaining normal morphology and basal motility.  相似文献   

16.
To determine whether antilymphocyte Abs to T cell costimulatory molecules are generated in patients with autoimmune diseases and, if they exist, to clarify the mechanism of their production and pathological roles, we investigated the presence of autoantibodies to CTLA-4 (CD152), CD28, B7-1 (CD80), and B7-2 (CD86) in serum samples obtained from patients with various autoimmune diseases and from normal subjects using recombinant fusion proteins. In ELISAs, anti-CD28, anti-B7-1, and anti-B7-2 Abs were rarely seen, whereas anti-CTLA-4 Abs were detected in 8.2% of the patients with systemic lupus erythematosus, 18.8% of those with rheumatoid arthritis, 3.1% of those with systemic sclerosis, 31.8% of those with Beh?et's disease, 13.3% of those with Sj?gren's syndrome, and 0% of healthy donors. This reactivity was confirmed by immunoblotting. More importantly, the purified anti-CTLA-4 Abs reacted with CTLA-4 expressed on P815 cells by flow cytometry. In addition, we found at least three epitopes on the CTLA-4 molecule. Furthermore, among the patients with Beh?et's disease, uveitis was seen significantly less frequently in the anti-CTLA-4 Ab-positive patients. Taken collectively, these data indicate that anti-CTLA-4 autoantibodies are generated in systemic autoimmune diseases by an Ag-driven mechanism and may modulate the immune response in vivo by binding to CTLA-4 on T cells.  相似文献   

17.
It is a consensus that a cytotoxic T lymphocyte associated molecule-4 (CTLA-4) transduces inhibitory signal for T cell activation under physiological condition, indicating that this molecule is an important regulator of T cell homeostasis in vivo. It has been reported that phosphorylation and dephosphorylation of tyrosine residue Y-165 in the cytoplasmic region of CTLA-4 play an important role in its negative signaling and cell surface expression. Some signaling molecules such as Src homology 2 protein tyrosine phosphatase 2 (SHP-2) and the p85 subunit of phosphatidylinositol 3 kinase (PI3 kinase) associate with phosphorylated tyrosine residue Y-165, through Src homology 2 (SH2) domains. On the other hand, the adapter complex proteins, AP-2 and AP-50 interact with the same tyrosine residue when unphosphorylated, resulting in clathrin-mediated endocytosis of CTLA-4 molecules. The objective of this study is to identify a tyrosine kinase that can directly bind and phosphorylate the critical tyrosine residue, Y-165 in the cytoplasmic domain of CTLA-4. Here, we demonstrated that 1) Janus Kinase 2 (Jak2) was directly associated with a box 1-like motif in the cytoplasmic tail of CTLA-4 molecule, 2) Jak2 phosphorylated Y-165 residue in the cytoplasmic region of CTLA-4 molecule, and 3) Jak2 was associated with CTLA-4 in HUT 78 T cell lines.  相似文献   

18.
19.
During keratinocyte stratification and wound healing, keratinocytes undergo a switch between differentiation and motility. However, limited knowledge exists on the mechanisms of the switch. We have previously demonstrated that the expression of CD9 was changed in different wound stages and involved in the regulation of keratinocyte migration. In this study, we showed that CD9 expression was increased in both human and mouse keratinocytes undergoing differentiation. CD9 overexpression in keratinocytes stimulated terminal differentiation and reduced cell motility. CD9 silencing inhibited calcium-induced keratinocyte differentiation and increased cell motility. Furthermore, CD9 overexpression recruited E-cadherin to the plasma membrane and subsequently activated PI3K/Akt signaling, while CD9 knockdown inhibited the recruitment of E-cadherin to the plasma membrane and PI3K/Akt activation. Importantly, silencing E-cadherin expression or inhibiting PI3K/Akt signaling reversed CD9 overexpression-induced differentiation and -reduced motility. These results demonstrate that CD9 acts as an important node that regulates keratinocyte differentiation and motility. The recruitment of E-cadherin to the plasma membrane and activation of the PI3K/Akt signaling pathway mediated by CD9 play an important role in these processes.  相似文献   

20.
CTLA-4 is a critical negative regulator of T cell response and is instrumental in maintaining immunological tolerance. In this article, we report that enhanced selective engagement of CTLA-4 on T cells by Ag-presenting dendritic cells resulted in the induction of Ag-specific CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(-)TGF-beta1(+) adaptive Tregs. These cells were CD62L(low) and hyporesponsive to stimulation with cognate Ag but demonstrated a superior ability to suppress Ag-specific effector T cell response compared with their CD62L(high) counterparts. Importantly, treatment of mice with autoimmune thyroiditis using mouse thyroglobulin (mTg)-pulsed anti-CTLA-4 agonistic Ab-coated DCs, which results in a dominant engagement of CTLA-4 upon self-Ag presentation, not only suppressed thyroiditis but also prevented reemergence of the disease upon rechallenge with mTg. Further, the disease suppression was associated with significantly reduced mTg-specific T cell and Ab responses. Collectively, our results showed an important role for selective CTLA-4 signaling in the induction of adaptive Tregs and suggested that approaches that allow dominant CTLA-4 engagement concomitant with Ag-specific TCR ligation can be used for targeted therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号