首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Zygomycetes, Mortierella isabellina, Thamnidium elegans and Mucor sp., were tested for their ability of producing biomass and lipid‐containing γlinolenic acid (GLA) during their cultivation on cheese whey. M. isabellina consumed all of the available lactose and a significant amount of the available protein. On the contrary, the two other fungi seemed incapable of consuming lactose after protein exhaustion. In the second series of experiments, for M. isabellina a supplementary quantity of lactose was added into the medium in order to increase the C/N ratio and hence to increase the production of fat. In the case of T. elegans and Mucor sp., a supplementary quantity of ammonium sulfate was added in order to favor the consumption of lactose and the production of biomass. Indeed, enhancement of lipid production was observed for M. isabellina and biomass production for T. elegans and Mucor sp.. Fatty acid analysis of the microbial lipid showed a composition that presented non‐negligible changes in relation with the age of the culture and the C/N molar ratio of the medium. Further analysis of the fat showed that the quantity of neutral lipids was the more abundant. The fatty acid composition of neutral lipids resembled to that of total lipids. Phospholipids were the more unsaturated fraction for Mucor sp. and M. isabellina. GLA was synthesized in all trials but its concentration presented differences related with the utilized strains and the fermentation time. Growth of M. isabellina on lactose‐supplemented whey resulted in a maximum GLA production of 301 mg/L.  相似文献   

2.
This research aims to examine the effect of cadmium uptake on lipid composition and fatty acid biosynthesis, in young leaves of tomato treated seedlings (Lycopersicon esculentum cv. Ibiza F1). Results in membrane lipids investigations revealed that high cadmium concentrations affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the unsaturated fatty acid content, resulting in a lower degree of fatty acid unsaturation. The level of lipid peroxides was significantly enhanced at high Cd concentrations. Studies of the lipid metabolism using radioactive labelling with [1-14C]acetate as a major precursor of lipid biosynthesis, showed that levels of radioactivity incorporation in total lipids as well as in all lipid classes were lowered by Cd doses. In total lipid fatty acids, [1-14C]acetate incorporation was reduced in tri-unsaturated fatty acids (C16:3 and C18:3); While it was enhanced in the palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and linoleic (C18:2) acids. [1-14C]acetate incorporation into C16:3 and C18:3 of galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] and some phospholipids [phosphatidylcholine (PC) and phosphatidylglycerol (PG)] was inhibited by Cd stress. Our results showed that in tomato plants, cadmium stress provoked an inhibition of polar lipid biosynthesis and reduced fatty acid desaturation process.  相似文献   

3.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

4.
Rotifers (Brachionus plicatilis), maintained on baker's yeast, were fed for 24h upon two algal diets, Isochrysis galbana (diet A) and Isochrysis galbana + Nannochloropsis gaditana (diet B). (These algal diets were selected for their potential use as essential fatty acid (EFA) boosters, taking into account the requirements of fish larvae). The effect of these algal diets on total lipid content, lipid classes and fatty acid composition was studied. The total lipid content increased after feeding upon both diets but no significant differences were found between the two types. Neutral lipid and polar lipid contents increased and a positive correlation was observed between the neutral lipids content of rotifers and that of the food supplied. However, the content of polar lipids in rotifers did not depend upon that of the diet. The increase in neutral lipid content was found to be higher in rotifers fed upon diet B, compared to diet A which increased the phospholipid content. Non-enriched rotifers contained only small amounts of polyenoic fatty acids, i.e. 18:3n-6, 18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3, the contents of which increased significantly by feeding both diets. The EFA composition (20:4n-6, 20:5n-3 and 22:6n-3) of neutral lipids and phopholipids in rotifers reflected the EFA composition of each diet. Diet B-fed rotifers had the highest content in 20:4n-6 and 20:5n-3, whereas rotifers fed diet A and the highest 22:6n-3 content. The mixed diet I. galbana + N. gaditana enhanced substantially the composition of lipid classes i.e. neutral lipids and of n-3 PUFA of rotifers in comparison with Isochrysis or yeast diets.  相似文献   

5.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

6.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

7.
Growth of two strains of Cunninghamella echinulata on various nitrogen containing raw materials (corn gluten, corn steep, whey concentrate, yeast extract and tomato waste hydrolysate) yielded important amounts of biomass containing various quantities of γ-linolenic acid (GLA) rich cellular lipids. Especially, growth on tomato waste hydrolysate (TWH) yielded 17.6 g/l of biomass containing 39.6% oil and significant quantities of GLA corresponding to 800 mg/l GLA. Mycelium-bounded proteolytic activity was detected during early growth stages on TWH and declined thereafter, increasing the concentration of assimilable nitrogen in the medium. However, addition of glucose in the medium during the stationary phase triggered the biosynthesis of reserve lipid, since an increase of the proportion of neutral lipids from 45% to 79% in total lipids was observed, while polar lipids decreased from 35% to 12% and from 20% to 9% for glycolipids plus sphingolipids and phospholipids, respectively.  相似文献   

8.
Since flow cytometry allows rapid,simultaneous and quantitative measurementsrelated to cell morphology andphysiologicy, the lipid-specificfluorescent dye, Nile Red, was employed forthe in vivo lipid quantification of Crypthecodinium cohnii, a heterotrophicmarine dinoflagellate rich inpolyunsaturated long chain fatty acids. Thefluorescence signal was linearly correlatedwith the neutral and polar lipid content asdetermined by gravimetric techniques. Asignificant correlation of NR signal wasalso observed between the polar to neutrallipid ratio and docohexaenoic acid percell. The results demonstrate a method forrapid lipid quantification that can be usedin the selection, isolation and culturecontrol of C. cohnii clones with highlipid and DHA content.  相似文献   

9.
Four strains of rat (Dark Agouti, DA; Ginger Hooded, GH; Portion, P; Hooded Wistar, HW) were fed elemental diets containing different sources of fat at the 10% (w/w) level. The dietary fats used included the following oils; olive (rich in oleate), sunflower (rich in linoleate), linseed (rich in alpha-linolenate) and fish (rich in eicosapentaenoate and docosahexaenoate). Differences between strains in response to individual diets were modest compared with the much greater differences achieved by the dietary treatments. In general, the changes in polyunsaturated fatty acid (PUFA) levels in the plasma lipids of all rat strains followed the major PUFA in the diet. There were, however, strong interactions between dietary n-6 and n-3 PUFA which affected not only the level of particular PUFA in lipid fractions but also the lipid fraction in which a particular PUFA appeared. Our findings indicate that a response to dietary fats in the plasma lipids of one strain of rat can be expected to occur with relatively minor variations in other commonly used rat strains.  相似文献   

10.
Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.  相似文献   

11.
Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin‐supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 106 cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro‐fluorometric analysis of Nile red‐stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α‐linolenic acid, an essential omega‐3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long‐term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae.  相似文献   

12.
Because of the diversity of their lipids and fatty acid biosynthetic pathways, lower fungi may find utilization as sources of omega-3 or other polyunsaturated fatty acids (PUFA). Production of eicosapentaenoic acid (EPA) by the filamentous fungus, Pythium irregulare, has been demonstrated in 14-1 fermentors. Sweet whey permeate (lactose) was preferred over glucose as a substrate for production of a high-EPA-content lipid. Characterization of the lipid indicated that approximately 90% of the EPA was contained in the neutral lipid fraction. A specific productivity of 24.9 mg EPA/g dry biomass was achieved at 14°C, at which temperature the lipid contained 25.5% EPA and 54.2% PUFA. This is the highest mycelial EPA content for a fungal lipid that has been reported in the literature. Correspondence to: D. J. O'Brien  相似文献   

13.
A continuous culture ofIsochrysis aff.galbana clone T.iso, used to feedPecten maximus larvae at IFREMER (Brest, France), was carried out in a chemostat at its optimum temperature for growth (26 °C). Changes in pigments, lipid class (neutral, glyco- and phospholipids) and degree of fatty acid unsaturation were studied at three different growth rates (0.33, 0.5, 1 d–1). As predicted by chemostat theory, a slow growth rate produced higher cell numbers and higher biomass per unit volume. These cells were low in chlorophylla and carotenoids, but rich in neutral lipids. In contrast, cultures with a fast growth rate yielded lower cell concentrations, buth higher chlorophylla, carotenoid and membrane lipid contents per cell. Changes in polyunsaturated fatty acid distribution were related to differences in algal growth rates. Neutral lipids contained mainly saturated and monounsaturated fatty acids (C18:19) at low growth rates whereas they were enriched in polyunsaturated fatty acids, especially C22:63, at high growth rates. Therefore, it is suggested that the growth rate in continuous cultures be controlled so as to adjust the relative proportions of polyunsaturated fatty acids in lipid classes of the diet meant for larval nutrition.Author for correspondence  相似文献   

14.
The lipid accumulation, fatty acid composition and γ-linolenic acid (GLA) production by 28 strains belonging to Mucorales were investigated. The lipid content varied from 5 to 30% on dry biomass and the percentage of γ-linolenic acid in total intracellular lipid was in a range from 2.5 to 15.4% (w/w). The best yield of γ-linolenic acid (expressed as mg GLA per 1 g biomass) was found for Mucor mucedo CCF – 1384 (28.4) and Cunninghamella echinulata CCF – 103 (25.1).  相似文献   

15.
An oleaginous hydrocarbon-degrading Rhodococcus opacus strain (PD630) was isolated from a soil sample. The cells were able to grow on a variety of substrates and to produce large amounts of three different types of intracellular inclusions during growth on alkanes, phenylalkanes, or non-hydrocarbon substrates. Electron microscopy revealed large numbers of electron-transparent inclusions with a sphere-like structure. In addition, electron-dense inclusions representing polyphosphate and electron-transparent inclusions with an elongated disc-shaped morphology occurred in small amounts. The electron-transparent inclusions of alkane- or gluconate-grown cells were composed of neutral lipids (98%, w/w), phospholipids (1.2%, w/w), and protein (0.8%, w/w). The major component of the cellular inclusions was triacylglycerols; minor amounts of diacylglycerols and probably also some free fatty acids were also present. Free fatty acids and/or fatty acids in acylglycerols in cells of R. opacus amounted up to 76 or 87% of the cellular dry weight in gluconate- or olive-oil-grown cells, respectively. The fatty acid composition of the inclusions depended on the substrate used for cultivation. In cells cultivated on n-alkanes, the composition of the fatty acids was related to the substrate, and intermediates of the β-oxidation pathway, such as hexadecanoic or pentadecanoic acid, were among the acylglycerols. Hexadecanoic acid was also the major fatty acid (up 36% of total fatty acids) occurring in the lipid inclusions of gluconate-grown cells. This indicated that strain PD630 utilized β-oxidation and de novo fatty acid biosynthesis for the synthesis of storage lipids. Inclusions isolated from phenyldecane-grown cells contained mainly the non-modified substrate and phenylalkanoic acids derived from the hydrocarbon oxidation, such as phenyldecanoic acid, phenyloctanoic acid, and phenylhexanoic acid, and approximately 5% (w/w) of diacylglycerols. The lipid inclusions seemed to have definite structures, probably with membranes at their surfaces, which allow them to maintain their shape, and with some associated proteins, probably involved in the inclusion formation. Received: 22 December 1995 / Accepted: 12 March 1996  相似文献   

16.
Quality of pork depends on genotype, rearing and pre- and post-slaughter conditions. However, no information is available on rearing system changes and oleic acid supplementation on carcass characteristics and fatty acid (FA) profile of pork from the Alentejano (AL) pig, an obese breed. This study evaluates the effects of feeding low (LO) or high oleic acid diets (HO) to AL pigs reared in individual pens (IND) or outdoor (OUT) with access to pasture. Carcass composition was obtained and longissimus dorsi and semimembranosus samples were collected to analyse chemical composition and neutral and polar intramuscular lipids FA profile by gas chromatography. Statistical analysis was performed by a two-way ANOVA for rearing system and diet effects. OUT-reared pigs presented leaner carcasses than IND-reared ones. Both muscles presented lower intramuscular lipid content in OUT-reared pigs. Treatments affected the FA profile of muscles. Overall, OUT-reared pigs presented lower n-6/n-3 FA ratios, whereas pigs fed the HO diet exhibited lower saturated fatty acids (SFA), higher monounsaturated fatty acids (MUFA) levels and lower thrombogenic indexes on neutral intramuscular lipids than LO-fed pigs. On the polar fraction, OUT-reared pigs presented lower SAT and n-6/n-3 FA ratio, and higher polyunsaturated fatty acids (PUFA) levels on both muscles. Pigs fed the HO diet exhibited higher MUFA and lower PUFA levels on both muscles, and lower SAT levels on semimembranosus. This study shows rearing system and oleic acid supplementation have complementary effects and influence carcass composition and the nutritional quality of meat.  相似文献   

17.
18.
Tetraselmis sp. and Nannochloropsis oculata, cultivated in industrial‐scale bioreactors, produced 2.33 and 2.44% w/w lipid (calculated as the sum of fatty acid methyl esters) in dry biomass, respectively. These lipids contained higher amounts of neutral lipids and glycolipids plus sphingolipids, than phospholipids. Lipids of Tetraselmis sp. were characterized by the presence of eicosapentaenoic acid (that was located mainly in phospholipids), and octadecatetraenoic acid (that was equally distributed among lipid fractions), while these fatty acids were completely absent in N. oculata lipids. Additionally, lipids produced by 16 newly isolated strains from Greek aquatic environments (cultivated in flask reactors) were studied. The highest percentage of lipids was found in Prorocentrum triestinum (3.69% w/w) while the lowest in Prymnesium parvum (0.47% w/w). Several strains produced lipids rich in eicosapentaenoic and docosahexaenoic acids. For instance, docosahexaenoic acid was found in high percentages in lipids of Amphidinium sp. S1, P. parvum, Prorocentrum minimum and P. triestinum, while lipids produced by Asterionella sp. (?) S2 contained eicosapentaenoic acid in high concentration. These lipids, containing ω‐3‐long‐chain polyunsaturated fatty acids, have important applications in the food and pharmaceutical industries and in aquaculture.  相似文献   

19.
Emerging aquatic insects, including mosquitoes, are known to transfer to terrestrial ecosystems specific essential biochemicals, such as polyunsaturated fatty acids (PUFA). We studied fatty acid (FA) composition and contents of dominant mosquito populations (Diptera: Culicidae), that is, Anopheles messeae, Ochlerotatus caspius, Oc. flavescens, Oc. euedes, Oc. subdiversus, Oc. cataphylla, and Aedes cinereus, inhabited a steppe wetland of a temperate climate zone to fill up the gap in their lipid knowledge. The polar lipid and triacylglycerol fractions of larvae and adults were compared. In most studied mosquito species, we first found and identified a number of short‐chain PUFA, for example, prominent 14:2n‐6 and 14:3n‐3, which were not earlier documented in living organisms. These PUFA, although occurred in low levels in adult mosquitoes, can be potentially used as markers of mosquito biomass in terrestrial food webs. We hypothesize that these acids might be synthesized (or retroconverted) by the mosquitoes. Using FA trophic markers accumulated in triacylglycerols, trophic relations of the mosquitoes were accessed. The larval diet comprised green algae, cryptophytes, and dinoflagellates and provided the mosquitoes with essential n‐3 PUFA, linolenic, and eicosapentaenoic acids. As a result, both larvae and adults of the studied mosquitoes had comparatively high content of the essential PUFA. Comparison of FA proportions in polar lipids versus storage lipids shown that during mosquito metamorphosis transfer of essential eicosapentaenoic and arachidonic acids from the reserve in storage lipids of larvae to functional polar lipids in adults occurred.  相似文献   

20.
Microbial lipids produced byRhodotorula glutinis grown in continuous culture with molasses under nitrogen-limiting conditions were evaluated and the effects of growth rate on fatty acid composition were studied. As the growth rate decreased, cell biomass, lipid content and lipid yield gradually increased. The maximum lipid content recorded was 39% (w/w) of dry cell biomass at a dilution rate of 0.04 h–1. The growth rate also affected fatty acid composition: oleic acid decreased with decreasing growth rate while stearic acid increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号