首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA (dsRNA) inhibits protein synthesis in rabbit reticulocyte lysates by activating the synthesis of the endonuclease effector pppA2' p5' A2' p5' A(2-5A) and a protein kinase which phosphorylates the protein synthesis initiation factor eIF-2. Under certain assay conditions, high concentrations of dsRNA are without inhibitory effect in many lysates (high dsRNA "reversible" lysates). In these lysates natural dsRNA at low concentrations stimulated protein kinase activity to a greater extent than did the synthetic dsRNA poly rI.rC. Synthesis of 2--5A was greater when poly rI.rC was used. However, a number of factors, including the salt concentration and messenger RNA used, combine to determine the overall effect of dsRNA on protein synthesis under any given set of experimental conditions.  相似文献   

2.
The synthesis of killer double-stranded ribonucleic acid (dsRNA) in Saccharomyces cerevisiae was examined in seven different cell division cycle mutants (cdc) that are defective in nuclear deoxyribonucleic acid replication and contain the "killer character." In cdc28, cdc4, and cdc7, which are defective in the initiation of nuclear deoxyribonucleic acid synthesis, and in cdc23 or in cdc14, defective in medial or late nuclear division, an overproduction of dsRNA at the restrictive temperature was observed. In contrast to the above mutants, the synthesis of killer dsRNA is not enhanced at the restrictive temperature in either cdc8 or cdc21, which are defective in deoxyribonucleic acid chain elongation. Examination of killer sensitive strains (cdc7 K- and cdc4 K-) has shown that the complete killer dsRNA genome is essential for the overproduction of dsRNA at the restrictive temperature.  相似文献   

3.
The M species (medium sized) dsRNA (1.1–1.4 × 106 daltons) isolated from a toxin-producing yeast killer strain (K+R+) and three related, defective interfering (suppressive) S species dsRNAs of the yeast killer-associated cytoplasmic multicomponent viral-like particle system were analyzed by in vitro translation in a wheat germ cell-free protein synthesis system. Heat-denatured M species dsRNA programmed the synthesis of two major polypeptides, M-P1 (32,000 daltons) and M-P2 (30,000 daltons). M-P1 has been shown by the criteria of proteolytic peptide mapping and cross-antigenicity to contain the 12,000 dalton polypeptide corresponding to the in vivo produced killer toxin, thus establishing that it is the M species dsRNA which carries the toxin gene. An M species dsRNA obtained from a neutral strain (K?R+) also programmed the in vitro synthesis of a polypeptide identical in molecular weight to M-P1, thus indicating that the cytoplasmic determinant of the mutant neutral phenotype is either a simple point mutation in the dsRNA toxin gene or a mutation in a dsRNA gene which is required for functional toxin production. In vitro translation of each of the three different suppressive S dsRNAs resulted in the production of a polypeptide (S-P1) of approximately 8000 daltons instead of the 32,000 dalton M-P1 polypeptide programmed by M dsRNA. This result is consistent with the heteroduplex analysis of these dsRNAs by Fried and Fink (1978), which shows retention of M dsRNA ends, accompanied by large internal deletions in each of the S dsRNAs translated.  相似文献   

4.
Koltin Y  Kandel JS 《Genetics》1978,88(2):267-276
The double-stranded RNA content, the production of inactive killer protein, and the presence of virus-like particles were examined in induced nonkiller mutants and nonkiller progeny from a cross between a killer strain and a sensitive strain. A correlation between the loss of the 0.7 x 106 daltons dsRNA of the Ustilago maydis P6 virus and the lack of synthesis of the killer protein was established. In vitro and in vivo complementation between nonkiller strains provide additional support for the suggestion that the 0.7 x 106 daltons dsRNA is related to the killer function. The coding capacity of the various species of dsRNA is discussed in relation to their possible function.  相似文献   

5.
6.
7.
The processes of melting and reassociation of double-stranded RNA in dimethylsulfoxide were studied. The addition of a small amount of LiCl results in great results in great reduction of Tm (temperature of melting), whereas the NaCl produces the opposite effect. It is suggested, that LiCl coordinates the molecules of H2O, reducing their activity, and consequently destabilises dsRNA. Mild conditions for melting and reassociation of RNA can be created. It was found that under optimal conditions for dsRNA melting, the degree of strand separation depends on the overall concentration of RNA, irrespective of the type of RNA added to the dsRNA preparation. Reassociation of dsRNA of EMC virus proceeds much faster than that of dsRNA of a related poliovirus. Addition of poly(C) to an annealing mixture slows down the rate of reassociation of EMC dsRNA, producing no effect on the poliovirus dsRNA reassociation. It is suggested that the presence of large poly(C) and poly(G) tracts in the complementary strands of the RNA determines its anomalous fast reassociation. Upon incubation of completely separated strands of EMC dsRNA in a water solution with high ionic strength partially double-stranded aggregates are formed. The formation of aggregates is prevented by addition of poly(A), which indicates that they are produced by "zippening" of a molecule starting with poly(A):poly(U) region. The significance of homopolymeric regions for stability of dsRNA of the EMC virus as well as their role in viral multiplication are discussed.  相似文献   

8.
M S Harris 《Microbios》1978,21(85-86):161-176
Virus-like particles and DsRNA found in extracts of killer, non-killer and suppressive non-killer strains were co-precipitated from cell extracts using an antibody prepared against purified virus-like particles isolated from a non-killer strain having only the higher molecular weight L dsRNA. The relative amount of virus-like particles correlated roughly with the amount of dsRNA: those strains with high concentrations of dsRNA had the most particles. When a preparation of particles was subjected to sucrose gradient velocity centrifugation, particles containing the S and M dsRNA could be separated from those containing the L dsRNA. These experiments taken together suggest that the L, M and S dsRNAs are separately encapsulated by the same protein coat.  相似文献   

9.
Yeast killer mutants with altered double-stranded ribonucleic acid   总被引:49,自引:13,他引:36       下载免费PDF全文
Killer strains of Saccharomyces cerevisiae contain two species of double-stranded ribonucleic acid (dsRNA) with molecular weights estimated at 2.5 x 10(6) (L) and 1.4 x 10(6) (M). The M component appears to have a high adenine content. All mutants of killer which are defective for both the toxin and immunity functions lack the M dsRNA. One of these mutants has a novel dsRNA with a molecular weight of 5 x 10(5). Another class of killer mutants contains strains which are defective for either the toxin or the immunity function. They include temperature-sensitive killers, superkillers, and immunity-minus strains. The dsRNA profile of temperature-sensitive killers resembles that of the standard killer. The superkiller has 2.5 times more of the M dsRNA (1.4 x 10(6) daltons) than does the standard killer. Immunity-minus killers have, in addition to the two dsRNAs species of standard killer, a novel dsRNA with a molecular weight of 2.5 x 10(5). The data are consistent with the hypothesis that the M RNA controls toxin production. In addition, the two RNAs, L and M, seem to be regulated together. When the M RNA is missing, the amount of L is either greatly elevated or greatly reduced.  相似文献   

10.
Summary Nonkiller progeny, lacking segments from the dsRNA genome of the virus associated with the P4 killer specifity, were recovered from a cross between a P4 killer strain and a sensitive strain. Three patterns of deletions were identified among the non-killers. In addition to the loss of killer activity these strains lost also the immunity and the ability to exclude the genomes of the virus associated with the P6 killer specifity but retained the essential information for viral coats. The patterns of deletions permitted the assignment of the killer function to 2 segments in the P4 genome, one in the medium group and the other in the lightest segment of the genome. Coat formation, as in the P6 virus, is associated with the heavy components of the dsRNA segmented genome but the information is organized somewhat differently from the organization of the virus associated with the P6 killer specifity. The loss of the exclusion function by the nonkillers enabled the reconstruction of hybrid viral genomes that restore specific killer activity. Thus, such hybrids indicate the position of the killer-related information in the P6 genome and suggest a role to the killer protein of P4 in the exclusion of specific dsRNA molecules.The study was supported in part by a Grant from the Branch of Basic Research of the Israel National Academy of Sciences  相似文献   

11.
dsRNA-mediated innate immunity of epidermal keratinocytes   总被引:6,自引:0,他引:6  
MIP-1alpha, a CC chemokine, recruits monocytes, natural killer cells, lymphocytes, and neutrophils, and plays a critical role in viral infection. Since, the lesional epidermis of herpes zoster expressed MIP-1alpha, we hypothesized that keratinocytes produce MIP-1alpha in response to virus-associated dsRNA via TLR3. To investigate this, we examined cultured human keratinocytes for MIP-1alpha production induced by poly(I:C), a TLR3 ligand. Poly(I:C) treatment induced MIP-1alpha production, interestingly, poly(I:C)-induced IFN-alpha and -beta production preceded MIP-1alpha production. A neutralizing antibody for IFN-beta significantly inhibited the poly(I:C)-induced MIP-1alpha production indicating that MIP-1alpha production is via IFN-beta. IFN-alpha priming enhanced TLR3 expression and MIP-1alpha production in poly(I:C)-treated keratinocytes. This suggests that IFN-alpha enhanced the TLR3 expression and reinforced the response of keratinocytes to poly(I:C), which resulted in an increase in MIP-1alpha production. In conclusion, normal human keratinocytes produce MIP-1alpha in response to dsRNA via TLR3, and this production is regulated by IFN-alpha/beta.  相似文献   

12.
A study was made of the virus-like particle (VLP) of Saccharomyces cerevisiae S7. This strain contains elevated amounts of P1 double-stranded ribonucleic acid (dsRNA) but no P2 dsRNA. The amount of dsRNA contained in cells grown on a fermentable carbon source (glucose) was compared with that in cells grown on a nonfermentable carbon source (ethanol). It was found that ethanol-grown cells contain higher levels of dsRNA than glucose-grown cells. In the former, the amount of dsRNA increased during the logarithmic phase of growth, whereas in the latter it increased during the transition from the logarithmic to the stationary phase. A method was devised to isolate VLPs from these cells by using CsCl gradients, and the yield was assessed by monitoring the recovery of dsRNA. Three proteins were found to be tightly associated with these particles. They have molecular weights of 75,000, 53,000, and 37,000. Together they account for almost all of the coding capacity of the P1 dsRNA that the VLP contains.  相似文献   

13.
14.
Accumulation of polyadenylated mRNA during liver regeneration.   总被引:1,自引:0,他引:1  
V Atryzek  N Fausto 《Biochemistry》1979,18(7):1281-1287
Cytoplasmic and polysomal polyadenylated mRNA [poly(A)+-mRNA] increased by 120% prior to the onset of DNA synthesis during the regeneration of rat liver following partial hepatectomy. Despite this large change in cytoplasmic mRNA and an approximately 50% increase in total nuclear RNA, the amount of polyadenylated nuclear RNA increased by only 15--20% during this time. Neither the average size of nuclear or of cytoplasmic polyadenylated mRNA nor the length of their poly(adenylic acid) [poly(A)] tracts changed during liver regeneration. Polysomal poly-(A)+-mRNA increased proportionately more and at a faster rate than rRNA during the first day following partial hepatectomy. Normal livers contained a substantial proportion of cytoplasmic poly(A)+-mRNA not associated with polysomes but this proportion was not altered in 3-h regenerating liver. Thus, in regenerating liver, most preexisting cytoplasmic mRNA does not appear to be recruited into polysomes prior to the substantial increase in the amount of cytoplasmic poly(A)+-mRNA.  相似文献   

15.
Respiratory infections with RNA viruses, such as rhinovirus or respiratory syncytial virus, are a major cause of asthma exacerbation, accompanied by enhanced neutrophilic and/or eosinophilic inflammation of the airways. We studied the effects of dsRNA synthesized during RNA virus replication, and of its receptor, TLR3, on the synthesis of eosinophilic chemokines in bronchial smooth muscle cells (BSMC). Synthetic dsRNA, polyinosinic-cystidic acid (poly(I:C)), induced the synthesis of eosinophilic chemokines, eotaxin-1/CCL11 and RANTES/CCL5, from primary cultures of human BSMC, and IL-4 increased synergistically the synthesis of poly(I:C)-induced CCL11. A robust eosinophil chemotactic activity was released from BSMC stimulated with poly(I:C) and IL-4, which was mostly inhibited by preincubation with an anti-CCL11, but not with an anti-CCL5 Ab. Although the immunoreactivity of TLR3 was detectable on the cellular surface of BSMC by flow cytometric analysis, pretreatment with an anti-TLR3-neutralizing Ab failed to block the poly(I:C)-induced synthesis of CCL11. We have determined by confocal laser-scanning microscopy that the immunoreactivity of TLR3 was aggregated intracellularly in poly(I:C)-stimulated BSMC, colocalizing with fluorescein-labeled poly(I:C). The synthesis of CCL11 was prominently inhibited by the transfection of TLR3-specific small interfering RNA or by bafilomycin A1, an endosomal acidification inhibitor, further supporting the essential role played by intracellular TLR3 in the synthesis of poly(I:C)-induced CCL11 in BSMC. In conclusion, these observations suggest that, by activating intracellular TLR3 in BSMC, respiratory RNA virus infections stimulate the production of CCL11 and enhance eosinophilic inflammation of the airways in the Th2-dominant microenvironment.  相似文献   

16.
A 4-8-fold increase in the rate of hepatic nuclear RNA synthesis occurred within 11 h after a single injection of oestradiol-17 beta to male Xenopus to induce egg-yolk protein synthesis. 2. By using a gentle procedure for fractionating nuclei into their major structurally different components [J. R. Tata& B. Baker (1974) Exp. Cell Res. 83. 111-124], it was found that the hormone-induced increase in the total amount of newly made RNA was associated with a 2-10-fold increase in the poly(A) content of nuclear RNA. 3. When the poly (A) content of nuclear RNA was determined by hybridization to poly[3H](U) or specific binding to oligo(dT)-cellulose, most of the increase (10-fold) in poly (A) content of newly synthesized RNA was associated with the euchromatin fractions, whereas the increase was less marked in the other subnuclear fractions. 4. Resolution of nuclear RNA into poly (A)-poor and poly(A)-rich RNA species by chromatography on oligo(dT)-cellulose, followed by polyacrylamide-gel electrophoresis with sodium dodecyl sulphate or in the pressence of 99% formamide, revealed that the hormone caused a preferential enhancement of high-molecular-weight (25S-60S) poly (A)-rich HnRNA (heterogeneous nuclear RNA,) much of which was associated with euchromatin and not with the nuclear sap. 5. Induction of vitellogenin in male frogs was in particular characterized by the appearance of a high-molecular-weight polyadenylated component exhibiting a peak at 35-36S, i.e. a molecular weight of approx. 2.05x10(6)+/-0.15x10(6). Although there is no evidence as yet that such a polyadenylated high-molecular-weight nuclear RNA species contains sequences corresponding to vitellogenin mRNA, it is possible that a high proportion of the most stable form of the putative nuclear precursor to vitellogenin mRNA induced by oestrogen in male Xenopus liver may be only marginally bigger than the cytoplasmic mRNA, and may at any one time be predominantly associated with the euchromatin fraction.  相似文献   

17.
18.
O Pines  H J Yoon    M Inouye 《Journal of bacteriology》1988,170(7):2989-2993
The gene for the double-stranded RNA (dsRNA)-specific RNase III of Escherichia coli was expressed in Saccharomyces cerevisiae to examine the effects of this RNase activity on the yeast. Induction of the RNase III gene was found to cause abnormal cell morphology and cell death. Whereas double-stranded killer RNA is degraded by RNase III in vitro, killer RNA, rRNA, and some mRNAs were found to be stable in vivo after induction of RNase III. Variants selected for resistance to RNase III induction were isolated at a frequency of 4 X 10(-5) to 5 X 10(-5). Ten percent of these resistant strains had concomitantly lost the capacity to produce killer toxin and M dsRNA while retaining L dsRNA. The genetic alteration leading to RNase resistance was localized within the RNase III-coding region but not in the yeast chromosome. These results indicate that S. cerevisiae contains some essential RNA which is susceptible to E. coli RNase III.  相似文献   

19.
20.
LL-37 is a peptide secreted by human epithelial cells that can lyse bacteria, suppress signaling by Toll-like receptor 4 (TLR4), and enhance signaling to double-stranded RNA (dsRNA) by TLR3. How LL-37 interacts with dsRNA to affect signal transduction by TLR3 is not completely understood. We determined that LL-37 binds dsRNA and traffics to endosomes and releases the dsRNA in a pH-dependent manner. Using dynamic light scattering spectroscopy and cell-based FRET experiments, LL-37 was found to form higher order complexes independent of dsRNA binding. Upon acidification LL-37 will dissociate from a larger complex. In cells, LL-37 has a half-live of ∼1 h. LL-37 half-life was increased by inhibiting endosome acidification or inhibiting cathepsins, which include proteases whose activity are activated by endosome acidification. Residues in LL-37 that contact poly(I:C) and facilitate oligomerization in vitro were mapped. Peptide LL-29, which contains the oligomerization region of LL-37, inhibited LL-37 enhancement of TLR3 signal transduction. LL-29 prevented LL-37·poly(I:C) co-localization to endosomes containing TLR3. These results shed light on the requirements for LL-37 enhancement of TLR3 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号