首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Su EW  Lin JY  Kane LP 《Cytokine》2008,44(1):9-13
Over the last several years, there has been increasing interest in the role of proteins of the TIM (T cell immunoglobulin and mucin domain) family in regulating immune responses. Despite what the name suggests, proteins of this family function in a much more widespread manner than just on T cells, as we will discuss in this review. We therefore propose that the definition of TIM be adjusted to "transmembrane immunoglobulin and mucin".  相似文献   

2.
Regulation of T cell dependent immune responses by TIM family members   总被引:12,自引:0,他引:12  
The T cell immunoglobulin mucin (TIM) proteins are type I membrane glycoproteins expressed on T cells and containing common structural motifs. While our understanding on the distribution and functions of TIM family members is still incomplete, data from several recent reports indicate that these proteins, together with T cell receptor and costimulatory signals, regulate the expansion and effector functions of T helper cells. In the current review, we provide evidences indicating that TIM-3 is capable of modulating the function of CD4(+)CD25(+) regulatory T cells and inhibiting aggressive Th1 mediated auto- and allo-immune responses. Similarly, additional data suggest that TIM-2 molecules function by negatively regulating Th2 immune responses. In contrast, TIM-1 appears to be an activation molecule for all T cells, although the mechanisms through which TIM-1 activates T cells remain to be elicited.  相似文献   

3.
T-cell immunoglobulin domain and mucin domain containing protein 1 (TIM1), also known as a cellular receptor for hepatitis A virus (HAVCR1) or a molecule induced by ischemic injury in the kidney (KIM1), is involved in the regulation of immune responses. We investigated a natural selection history of TIM1 by comparative sequencing analysis in 24 different primates. It was found that TIM1 had become a pseudogene in multiple lineages of the New World monkey. We also investigated T cell lines originated from four different New World monkey species and confirmed that TIM1 was not expressed at the mRNA level. On the other hand, there were ten amino acid sites in the Ig domain of TIM1 in the other primates, which were suggested to be under positive natural selection. In addition, mucin domain of TIM1 was highly polymorphic in the Old World monkeys, which might be under balanced selection. These data suggested that TIM1 underwent a lineage-specific evolutionary pathway in the primates.  相似文献   

4.
Upon recognition of viral infection, RIG-I and Helicard recruit a newly identified adapter termed Cardif, which induces type I interferon (IFN)-mediated antiviral responses through an unknown mechanism. Here, we demonstrate that TRAF3, like Cardif, is required for type I interferon production in response to intracellular double-stranded RNA. Cardif-mediated IFNalpha induction occurs through a direct interaction between the TRAF domain of TRAF3 and a TRAF-interaction motif (TIM) within Cardif. Interestingly, while the entire N-terminus of TRAF3 was functionally interchangeable with that of TRAF5, the TRAF domain of TRAF3 was not. Our data suggest that this distinction is due to an inability of the TRAF domain of TRAF5 to bind the TIM of Cardif. Finally, we show that preventing association of TRAF3 with this TIM by mutating two critical amino acids in the TRAF domain also abolishes TRAF3-dependent IFN production following viral infection. Thus, our findings suggest that the direct and specific interaction between the TRAF domain of TRAF3 and the TIM of Cardif is required for optimal Cardif-mediated antiviral responses.  相似文献   

5.
Chae SC  Park YR  Song JH  Shim SC  Yoon KS  Chung HT 《Immunogenetics》2005,56(10):696-701
It has been determined that the family of T-cell immunoglobulin domain and mucin domain (TIM) proteins is expressed on T cells. A member of the TIM family, TIM-1, is considered to be a membrane protein associated with the development of Th2-biased immune responses and selectively expressed on Th2 cells. We previously showed that the exon 4 variations of Tim-1 are associated with susceptibility to allergic diseases, as well as autoimmune diseases such as rheumatoid arthritis (RA). In this study, we assessed the association between genotype and allele frequencies of the Tim-1 gene promoter region, in both RA patients and the controls without RA, using polymerase chain reaction-restriction fragment length polymorphism and single-base extension methods. We further investigated the relationships among the genotypes of each polymorphism and C-reactive protein or rheumatoid factor levels in RA patients. The genotype and allele frequencies of the –1637A>G polymorphism in RA patients are significantly different from those in the non-RA controls (P=0.0004 and P=0.001, respectively). Our results strongly suggest that polymorphism in the Tim-1 promoter region might be associated with susceptibility to RA.  相似文献   

6.
The TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution. Tim9 and Tim10 bound to one another with submicromolar affinity in equimolar amounts and assembled in a stable, significantly extended complex that was indistinguishable from the native mitochondrial TIM10 complex. Importantly, the reconstituted TIM10 complex is functional because it bound to the physiological substrate ADP/ATP carrier and displayed chaperone activity in refolding the model substrate firefly luciferase. These data demonstrate that the individual subunits can exist as independent, dynamically self-associating proteins. Assembly into the thermodynamically stable hexameric complex is necessary for the TIM10 chaperone function.  相似文献   

7.
Eukaryotic organisms of the plant and animal kingdoms have developed evolutionarily conserved systems of defence against microbial pathogens. These systems depend on the specific recognition of microbial products or structures by molecules of the host innate immune system. The first mammalian molecules shown to be involved in innate immune recognition of, and defence against, microbial pathogens were the Toll-like receptors (TLRs). These proteins are predominantly but not exclusively located in the transmembrane region of host cells. Interestingly, mammalian hosts were subsequently found to also harbour cytosolic proteins with analogous structures and functions to plant defence molecules. The members of this protein family exhibit a tripartite domain structure and are characterized by a central nucleotide-binding oligomerization domain (NOD). Moreover, in common with TLRs, most NOD proteins possess a C-terminal leucine-rich repeat (LRR) domain, which is required for the sensing of microbial products and structures. Recently, the name 'nucleotide-binding domain and LRR' (NLR) was coined to describe this family of proteins. It is now clear that NLR proteins play key roles in the cytoplasmic recognition of whole bacteria or their products. Moreover, it has been demonstrated in animal studies that NLRs are important for host defence against bacterial infection. This review will particularly focus on two subfamilies of NLR proteins, the NODs and 'NALPs', which specifically recognize bacterial products, including cell wall peptidoglycan and flagellin. We will discuss the downstream signalling events and host cell responses to NLR recognition of such products, as well as the strategies that bacterial pathogens employ to trigger NLR signalling in host cells. Cytosolic recognition of microbial factors by NLR proteins appears to be one mechanism whereby the innate immune system is able to discriminate between pathogenic bacteria ('foe') and commensal ('friendly') members of the host microflora.  相似文献   

8.
The function of the mammalian TIMELESS protein (TIM) has been enigmatic. TIM is essential for early embryonic development, but little is known regarding its biochemical and cellular function. Although identified based on similarity to a Drosophila circadian clock factor, it also shares similarity with a second family of proteins that is more widely conserved throughout eukaryotes. Members of this second protein family in yeast (S.c. Tof1p, S.p. Swi1p) have been implicated in DNA synthesis, S-phase-dependent checkpoint activation and chromosome cohesion, three processes coordinated at the level of the replication fork complex. The present work demonstrates that mammalian TIM and its constitutive binding partner, Tipin (ortholog of S.c. Csm3p, S.p. Swi3p), are replisome-associated proteins. Both proteins associate with components of the endogenous replication fork complex, and are present at BrdU-positive DNA replication sites. Knock-down of TIM also compromises DNA replication efficiency. Further, the direct binding of the TIM-Tipin complex to the 34 kDa subunit of replication protein A provides a biochemical explanation for the potential coupling role of these proteins. Like TIM, Tipin is also involved in the molecular mechanism of UV-dependent checkpoint activation and cell growth arrest. Tipin additionally associates with peroxiredoxin2 and appears to be involved in checkpoint responses to H(2)O(2), a role recently described for yeast versions of TIM and Tipin. Together, this work establishes TIM and Tipin as functional orthologs of their replisome-associated yeast counterparts capable of coordinating replication with genotoxic stress responses, and distinguishes mammalian TIM from the circadian-specific paralogs from which it was originally identified.  相似文献   

9.
The development of asthma and other atopic diseases is influenced by cytokines produced by Th2 effector T cells. How effector T cell responses are regulated once these cell populations are established remains unclear. The recently described T cell and airway phenotype regulator locus, containing the T cell, Ig domain, mucin domain (TIM) genes, is genetically associated with Th2 cytokine production and Th2-dependent immune responses. In this study, we report the phenotype of the TIM-2 gene-deficient mouse, and demonstrate exacerbated lung inflammation in an airway atopic response model. Immune responses in the TIM-2-deficient mouse reveal disregulated expression of Th2 cytokines, and adoptive transfer experiments show that the T cell compartment is responsible for the heightened inflammatory phenotype. These studies show that TIM-2 is a novel and critical regulator of effector T cell activity.  相似文献   

10.
TIM (T cell, Ig, mucin) proteins can regulate T cell immune responses. Tim-4 mRNA is not expressed in T cells, but exclusively in APCs. Tim-4 is a ligand for Tim-1 and Tim-4.Ig fusion protein was shown to either inhibit or expand T cells. However, the molecular basis for such opposite effects was not defined. By generating mAbs, we show that expression of Tim-4 protein is restricted to CD11c(+) and CD11b(+) cells and is up-regulated upon activation. We show that Tim-4 specifically phosphorylates Tim-1 and induces T cell expansion by enhancing cell division and reducing apoptosis. Tim-4 also induces the phosphorylation of signaling molecules LAT, Akt, and ERK1/2 in T cells. Tim-4, expressed on APCs, is a costimulatory molecule that promotes T cell expansion and survival by cross-linking Tim-1 on T cells.  相似文献   

11.
The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens.  相似文献   

12.
The family of T-cell immunoglobulin domain and mucin domain (TIM) proteins is identified to be expressed on T cells. A member of Tim family, TIM-1, is considered as a membrane protein that is associated with the development of Th2 biased immune responses and may be selectively expressed on Th2 cells. In the present study, we analyzed the association of allele and genotype frequencies between asthma or atopy patients and the controls without asthma and atopy using large sample size at 5383_5397del and 5509_5511delCAA variations of Tim-1 gene. Although the allele frequency of 5509_5511delCAA variation in asthma was not significantly different (P=0.085), the genotype of 5509_5511delCAA variation in asthma was significantly associated with the susceptibility to asthma (P=0.037). The genotype and allele frequencies of 5383_5397del variation in atopic dermatitis were significantly different from those in the non-asthmatic and non-atopic controls (P=0.005 and P=0.002, respectively). Our results strongly suggest that the 5383_5397del variation site of Tim-1 exon 4 might be associated with atopic dermatitis susceptibility.  相似文献   

13.
Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N‐terminal, soluble domain in the intermembrane space (IMS) and a C‐terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N‐terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge‐hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network.  相似文献   

14.
Murcha MW  Lister R  Ho AY  Whelan J 《Plant physiology》2003,131(4):1737-1747
Characterization of components 17 and 23 of the inner mitochondrial membrane translocase (TIM17:23) from Arabidopsis indicated that there were three genes present for TIM17 and TIM23 and two for TIM44. AtTIM17 differed from the yeast (Saccharomyces cerevisiae) and mammalian homologs in that two genes encoded proteins that were longer and one gene encoded a shorter protein. All Arabidopsis TIM23 predicted proteins appeared to lack the first 34 amino acids compared with yeast TIM23. All AtTIM17 and AtTIM23 genes were expressed but displayed different tissue and developmental profiles. Complementation of deletion mutants in yeast indicated that for AtTIM17, the extension at the C terminus not present in yeast had to be removed to achieve complementation, whereas for TIM23, a preprotein and amino acid transporter domain had to be present for complementation. Import assays with AtTIM17 and AtTIM23 indicated that they both contained internal signals for integration into the inner mitochondrial membrane in a membrane potential-dependent manner. The C terminus of imported AtTIM17-2 was susceptible to degradation by externally added protease with intact mitochondria. Removal of the 85 C-terminal amino acids resulted in import and full protection of the truncated protein. This suggests that the novel extension at the C terminus of AtTIM17-2 links the outer and inner membrane in a manner analogous to yeast TIM23.  相似文献   

15.
The mitochondrial inner membrane has a central function for the energy metabolism of the cell. The respiratory chain generates a proton gradient across the inner mitochondrial membrane, which is used to produce ATP by the F1Fo-ATPase. To maintain the electrochemical gradient, the inner membrane represents an efficient permeability barrier for small molecules. Nevertheless, metabolites as well as polypeptide chains need to be transported across the inner membrane while the electrochemical gradient is retained. While specialized metabolite carrier proteins mediate the transport of small molecules, dedicated protein translocation machineries in the inner mitochondrial membrane (so called TIM complexes) transport precursor proteins across the inner membrane. Here we describe the organization of the TIM complexes and discuss the current models as to how they mediate the posttranslational import of proteins across and into the inner mitochondrial membrane.  相似文献   

16.
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. We isolated the TIM23 complex of Neurospora crassa. Besides Tim23 and Tim17, it contained a novel component, referred to as Tim50. Tim50 spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. Tim50 is essential for viability of yeast. Mitochondria from cells depleted of Tim50 displayed strongly reduced import kinetics of preproteins using the TIM23 complex. Tim50 could be cross-linked to preproteins that were halted at the level of the translocase of the outer membrane (TOM complex) or spanning both TOM and TIM23 complexes. We suggest that Tim50 plays a crucial role in the transfer of preproteins from the TOM complex to the TIM23 complex through the intermembrane space.  相似文献   

17.
Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the ‘off-target’ effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of molecules used in immunotherapy of allergic conditions.  相似文献   

18.
Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.  相似文献   

19.
The Ebola virus (EBOV) hijacks normal physiological processes by apoptotic mimicry to be taken up by the cell it infects. The initial adhesion of the virus to the cell is based on the interaction between T cell immunoglobulin and mucin domain protein, TIM, on the cell surface and phosphatidylserine (PS) on the viral outer surface. Therefore, it is important to understand the interaction between EBOV and PS and TIM, with selective blocking of the interaction as a potential therapy. Recent experimental studies have shown that for TIM-dependent EBOV entry, a mucin-like domain with a length of at least 120 amino acids is required, possibly because of the increase of area of the PS-coated surface sampled. We examine this hypothesis by modeling the process of TIM-PS adhesion using a coarse-grained molecular model. We find that the strength of individual bound PS-TIM pairs is essentially independent of TIM length. TIMs with longer mucin-like domains collectively have higher average binding strengths because of an increase in the probability of binding between EBOV and TIM proteins. Similarly, we find that for larger persistence length (less flexible), the average binding force decreases, again because of a reduction in the probability of binding.  相似文献   

20.
A new protein domain was found in several proteins involved in apoptosis, inflammation, cancer and immune responses. Its location within these proteins and predicted fold suggests that it functions as a protein-protein interaction domain, possibly uniting different signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号