首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ferrous iron and 2-oxoglutarate (2OG) dependent oxygenases catalyse two electron oxidation reactions by coupling the oxidation of substrate to the oxidative decarboxylation of 2OG, giving succinate and carbon dioxide coproducts. The evidence available on the level of incorporation of one atom from dioxygen into succinate is inconclusive. Here, we demonstrate that five members of the 2OG oxygenase family, AlkB from Escherichia coli, anthocyanidin synthase and flavonol synthase from Arabidopsis thaliana, and prolyl hydroxylase domain enzyme 2 and factor inhibiting hypoxia-inducible factor-1 from Homo sapiens all incorporate a single oxygen atom, almost exclusively derived from dioxygen, into the succinate co-product.  相似文献   

2.
2-Oxoglutarate (2OG) dependent dioxygenases are ubiquitous iron containing enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. They participate in a wide range of biological processes including collagen biosynthesis, fatty acid metabolism, hypoxic sensing and demethylation of nucleic acids and histones. Although substantial progress has been made in elucidating their function, the role of many 2OG dioxygenases remains enigmatic. Here we have studied the 2OG and iron (Fe(II)) dependent dioxygenase Ofd2 in Schizosaccharomyces pombe, a member of the AlkB subfamily of dioxygenases. We show that decarboxylation of 2OG by recombinant Ofd2 is dependent on Fe(II) and a histidine residue predicted to be involved in Fe(II) coordination. The decarboxylase activity of Ofd2 is stimulated by histones, and H2A has the strongest effect. Ofd2 interacts with all four core histones, however, only very weakly with H4. Our results define a new subclass of AlkB proteins interacting with histones, which also might comprise some of the human AlkB homologs with unknown function.  相似文献   

3.
The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV-visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a g(max) of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.  相似文献   

4.
We have employed detergent solubilization and sucrose density gradient centrifugation to obtain pigment-protein complexes from Rhodopseudomonas palustris. Two types of detergent buffers were used, containing either octyl-beta-glucopyranoside (OG) plus sodium dodecyl sulfate (SDS) or OG alone. The fractions thus obtained were analyzed spectrophotometrically and by polyacrylamide gel electrophoresis to determine their pigment and protein composition. OG-SDS solubilization yields four fractions. The least dense of these fractions (OG-SDS a and b) are nonspecific mixtures of peptides and pigments. The next fraction, OG-SDS c, is an accessory light-harvesting complex, LHII, called B800-850. The largest particle, OG-SDS d, is a combination of reaction center (RC) and primary light-harvesting complex (LHI), B880. Solubilization using OG alone yields one fraction, a single large complex consisting of RC, LHI, and LHII. We have inserted the two large OG-SDS complexes and the OG complex into phospholipid liposomes to determine the size of such complexes in freeze-fractured membranes. On the basis of morphological, biochemical, and available biophysical data, we propose the following models for pigment-protein complexes in R. palustris membranes: 5-nm particles as free RC or LHI tetramers, 7.5-nm particles as LHI or LHII octamers (or both); 10-nm particles as RC-LHI core complexes (1 RC plus 12 LHI) or large LHII oligomers (or both), and large particles of 12.5 and 15 nm and LHII associated with the RC-LHI core complex.  相似文献   

5.
6.
The aerobic archaea possess four closely spaced, adjacent genes that encode proteins showing significant sequence identities with the bacterial and eukaryal components comprising the 2-oxoacid dehydrogenase multi-enzyme complexes. However, catalytic activities of such complexes have never been detected in the archaea, although 2-oxoacid ferredoxin oxidoreductases that catalyze the equivalent metabolic reactions are present. In the current paper, we clone and express the four genes from the thermophilic archaeon, Thermoplasma acidophilum, and demonstrate that the recombinant enzymes are active and assemble into a large (M(r) = 5 x 10(6)) multi-enzyme complex. The post-translational incorporation of lipoic acid into the transacylase component of the complex is demonstrated, as is the assembly of this enzyme into a 24-mer core to which the other components bind to give the functional multi-enzyme system. This assembled complex is shown to catalyze the oxidative decarboxylation of branched-chain 2-oxoacids and pyruvate to their corresponding acyl-CoA derivatives. Our data constitute the first proof that the archaea possess a functional 2-oxoacid dehydrogenase complex.  相似文献   

7.
The concept of micelle-supported electroenzymology is demonstrated using a system consisting of the membrane enzyme Escherichia coli fumarate reductase (FRD), the amphiphilic coenzyme analogue decylubiquinone (DU), the micelle-forming surfactant n-octyl glucoside (OG), and a gold electrode. The OG micelles provide a hydrophobic, membrane mimetic medium for FRD and DU to exchange electrons while the gold electrode serves to regenerate DU. When succinate is presented to the FRD/DU/OG micelle system, electroenzymatic oxidation of succinate to fumarate occurs as evidenced using cyclic voltammetry. DU is shown to be the only electroactive species in the system; and as increasing amounts of succinate are added, the expected increase in the peak anodic (oxidative) current and decrease in the peak cathodic (reductive) current are observed. The peak anodic current approaches a limiting value with succinate concentration in qualitative agreement with simple Michaelis-Menten enzyme kinetics. When the strong competitive inhibitor oxaloacetate is added, enzymatic oxidation of succinate is inhibited as indicated by no change in the peak anodic and cathodic currents with increasing succinate concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
Leipold MD  Muller JG  Burrows CJ  David SS 《Biochemistry》2000,39(48):14984-14992
An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.  相似文献   

9.
Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1-methyladenine and 3-methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2-oxoglutarate (2OG) at 1.5 A resolution and analyse key site-directed mutants. The hABH3 structure reveals the beta-strand jelly-roll fold that coordinates a catalytically active iron centre by a conserved His1-X-Asp/Glu-X(n)-His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG-dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds-DNA discrimination, and reveal self-hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.  相似文献   

10.
M Suzuki  M D Allen  N Yagi    J T Finch 《Nucleic acids research》1996,24(14):2767-2773
Possible stereochemical determinants of the orientation of TBP on the TATA box are discussed using the crystal coordinates of TBP-TATA complexes, which have been determined by other groups. The C-terminal half of the TBP beta-sheet interacts with the TATA site of the DNA, and the N-terminal half with the A-rich site, so that the two sites with distinct curvatures produce a unique fit. Although chemical contacts take place between one side of the beta-sheet and the DNA minor groove, the interaction seems to be facilitated indirectly by the characteristics of the other side of the beta-sheet and the DNA major groove. Thus, Ala71, Leu162 and Pro190 differentiate the curvature of the beta-sheet in the N- and C-halves. The methyl positions in the DNA major groove modulate the bendability of the two DNA sites by using differences in the rolling capacity of TA and AT compared with PyT, and in the shifting capacity of AT compared with TT. The deformations of the first steps (TA and PyT) in the two sites are the largest and thus are important for the overall bending of the DNA. The differences between the two DNA sites are greatest at the second steps (AT and TT) and so these are important for determining the orientation of TBP.  相似文献   

11.
The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.  相似文献   

12.
Purified branched-chain 2-oxo acid dehydrogenase (BCODH) and pyruvate dehydrogenase (PDH) had apparent Km values (microM) for 2-oxobutyrate of 26 and 114, with a relative Vmax. (% of Vmax. for 3-methyl-2-oxobutyrate and pyruvate) of 38 and 45% respectively. The phosphorylation state of both complexes in extracts of mitochondria from rat liver, kidney, heart and skeletal muscle was shown to influence oxidative decarboxylation of 2-oxobutyrate. Inhibitory antibodies to BCODH and an inhibitor of PDH (3-fluoropyruvate) were used with mitochondrial extracts to determine the relative contribution of both complexes to oxidative decarboxylation of 2-oxobutyrate. Calculated rates of 2-oxobutyrate decarboxylation in mitochondrial extracts, based on the kinetic constants given above and the activities of both complexes, were the same as the measured rates. Hydroxyapatite chromatography of extracts of mitochondria from rat liver revealed only two peaks of oxidative decarboxylation of 2-oxobutyrate, with one peak associated with PDH and the other with BCODH. Competition studies with various 2-oxo acids revealed a different inhibition pattern with mitochondrial extracts from liver compared with those from heart or skeletal muscle. We conclude that both intramitochondrial complexes are responsible for oxidative decarboxylation of 2-oxobutyrate. However, the BCODH is probably the more important complex, particularly in liver, on the basis of kinetic analyses, activity or phosphorylation state of both complexes, competition studies, and the apparent physiological concentration of pyruvate, 2-oxobutyrate and the branched-chain 2-oxo acids.  相似文献   

13.
Johansen ME  Muller JG  Xu X  Burrows CJ 《Biochemistry》2005,44(15):5660-5671
The formation of covalent cross-links between amino acid side chains and DNA bases in DNA-protein complexes is a significant pathway in oxidative damage to the genome, yet much remains to be learned about their chemical structures and mechanisms of formation. In the present study, DNA-protein cross-links (DPCs) were formed between synthetic oligodeoxynucleotides containing an 8-oxo-7,8-dihydro-2'deoxyguanosine (OG) or an 8-oxo-7,8-dihydro-2'-deoxyadenosine (OA) nucleotide and Escherichia coli singled-stranded binding protein (SSB) under oxidative conditions. Studies with various sequences indicated that DNA homopolymers and those lacking 8-oxopurines were less reactive toward DPC formation. DPCs were formed in the presence of HOCl, peroxynitrite, and the one-electron oxidants Na(2)IrCl(6), Na(2)IrBr(6), and Na(3)Fe(CN)(6). Protein-protein cross-linking was also observed, particularly for oxidants of high reduction potential such as Na(2)IrCl(6). The adducted oligodeoxynucleotides were sensitive to hot piperidine treatment leading to strand scission at the site of cross-linking. In addition, the covalent cross-links were somewhat heat and acid labile, which may be related to the difficulties encountered in obtaining complete characterization of trypsin digests of the DPCs. However, model reactions involving the single amino acids lysine, arginine, and tyrosine, residues known to be involved in base contacts in the DNA:SSB complex, could be studied, and the adduct formed between N(alpha)-acetyllysine methyl ester and an 18-mer containing OG was tentatively characterized by electrospray ionization mass spectrometry as analogues of spiroiminodihydantoin and guanidinohydantoin. A mechanism involving nucleophilic attack of an amino acid side chain (e.g. the epsilon-amino group of lysine) at C5 of a 2-electron oxidized form of OG is proposed.  相似文献   

14.
An anaerobic bacterium was isolated from a polluted sediment, with succinate and yeast extract as carbon and energy sources. The new strain was Gram-positive, the cells were coccal shaped, the mol% G+C content of the genomic DNA was 29, and the peptidoglycan was of the L-ornithine-D-glutamic acid type. Comparative sequence analysis of the 16S rRNA gene showed the new strain to belong to the genus Peptostreptococcus. Succinate, fumarate, pyruvate, 3-hydroxybutyrate and lysine supported growth. Succinate was degraded to propionate and presumably CO2, with a stoichiometric cell yield. Key enzymes of the methylmalonyl-CoA decarboxylase pathway were present. The methylmalonyl-CoA decarboxylase activity was avidin-sensitive and sodium dependent, and about 5 mM Na+ was required for maximal activity. Whole cells, however, required at least 50 mM sodium for maximal succinate decarboxylation activity and to support the maximum growth rate. Sodium-dependent energy conservation coupled to succinate decarboxylation is shown for the first time to occur in a bacterium belonging to the group of Gram-positive bacteria containing the peptostreptococci and their relatives.  相似文献   

15.
The B820 subunit is an integral pigment-membrane protein complex and can be obtained by both dissociation of the core light-harvesting complex (LH1) in photosynthetic bacteria and reconstitution from its component parts in the presence of n-octyl beta-D-glucopyranoside (OG). Intrinsic size of the B820 subunit from Rhodospirillum rubrum LH1 complex was measured by small-angle neutron scattering in perdeuterated OG solution and evaluated by Guinier analysis. Both the B820 subunits prepared by dissociation of LH1 and reconstitution from apopolypeptides and pigments were shown to have a molecular weight of 11,400 +/- 500 and radius of gyration of 11.0 +/- 1.0 A, corresponding to a heterodimer consisting of one pair of alphabeta-polypeptides and two bacteriochlorophyll a molecules. Molecular weights of micelles formed by OG alone in solutions were determined in a range from 30,000 to 50,000 over concentrations of 1-5% (w/v), and thus are much larger than that of the B820 subunit. Similar measurement on the pigment-depleted apopolypeptides revealed highly heterogeneous behavior in the OG solutions, indicating that aggregates with various sizes were formed. The result provides evidence that bacteriochlorophyll a molecules play a crucial role in stabilizing and maintaining the B820 subunits in the dimeric state in solution. Further measurements on individual alpha- and beta-polypeptides exhibited a marked difference in aggregation property between the two polypeptides. The alpha-polypeptides appear to be uniformly dissolved in OG solution in a monomeric form, whereas the beta-polypeptides favor a self-associated form and tend to form large aggregates even in the presence of detergent. The difference in aggregation tendency was discussed in relation to the different behavior between alpha- and beta-polypeptides in reconstitution with bacteriochlorophyll a molecules.  相似文献   

16.
17.
The DNA repair enzyme MutY plays an important role in the prevention of DNA mutations resulting from the presence of the oxidatively damaged lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). MutY is a base excision repair (BER) glycosylase that removes misincorporated adenine residues from OG:A mispairs, as well as G:A and C:A mispairs. We have previously shown that, under conditions of low MutY concentrations relative to an OG:A or G:A substrate, the time course of the adenine glycosylase reaction exhibits biphasic kinetic behavior due to slow release of the DNA product by MutY. The dissociation of MutY from its product may require the recruitment of other proteins from the BER pathway, such as an apurinic-apyrimidinic (AP) endonuclease, as turnover-enhancing cofactors. The effect of the AP endonucleases endonuclease IV (Endo IV), exonuclease III (Exo III), and Ape1 on the reaction kinetics of MutY with G:A- and OG:A-containing substrates was investigated. The effect of the glycosylases UDG and MutM and the DNA polymerase pol I was also characterized. Endo IV and Exo III, unlike Ape1, UDG, and pol I, greatly enhance the rate of product release with a G:A substrate, whereas the rate constant for the adenine removal step remains unchanged. Furthermore, the turnover rate with a truncated form of MutY, Stop 225, which lacks 125 amino acids of the C terminus, is unaffected by the presence of Endo IV or Exo III. These results constitute the first evidence of an interaction between the MutY-product DNA complex and Endo IV or Exo III. Furthermore, they suggest a role for the C-terminal domain of MutY in mediating this interaction.  相似文献   

18.
The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet.  相似文献   

19.
Nickel is considered a weak carcinogen. Some researches have shown that bound proteins or synthetic ligands may increase the toxic effect of nickel ions. A systematic study of ligand effects on the interaction between nickel complexes and DNA is necessary. Here, we compared the interactions between DNA and six closely related Schiff base tetraazamacrocyclic oxamido nickel(II) complexes NiL(1-3a,1-3b). The structure of one of the six complexes, NiL(3b) has been characterized by single crystal X-ray analysis. All of the complexes can cleave plasmid DNA under physiological conditions in the presence of H(2)O(2). NiL(3b) shows the highest DNA cleavage activity. It can convert supercoiled DNA to nicked DNA then linear DNA in a sequential manner as the complex concentration or reaction time is increased. The cleavage reaction is a typical pseudo-first-order consecutive reaction with the rate constants of 3.27+/-0.14h(-1) (k(1)) and 0.0966+/-0.0042h(-1) (k(2)), respectively, when a complex concentration of 0.6mM is used. The cleavage mechanism between the complex and plasmid DNA is likely to involve hydroxyl radicals as reactive oxygen species. Circular dichronism (CD), fluorescence spectroscopy and gel electrophoresis indicate that the complexes bind to DNA by partial intercalative and groove binding modes, but these binding interactions are not the dominant factor in determining the DNA cleavage abilities of the complexes.  相似文献   

20.
AlkB is one of four proteins involved in the adaptive response to DNA alkylation damage in Escherichia coli and is highly conserved from bacteria to humans. Recent analyses have verified the prediction that AlkB is a member of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase family of enzymes. AlkB mediates repair of methylated DNA by direct demethylation of 1-methyladenine and 3-methylcytosine lesions. Other members of the Fe(II) and 2OG-dependent oxygenase family, including those involved in the hypoxic response, are targets for therapeutic intervention. Assays measuring 2OG turnover were used to investigate the selectivity of AlkB. 1-Methyladenosine, 1-methyl-2'-deoxyadenosine, 3-methylcytidine, and 3-methyl-2'-deoxycytidine all stimulated 2OG turnover by AlkB but were not demethylated indicating an uncoupling of 2OG and prime substrate oxidation and that oligomeric DNA is required for hydroxylation and subsequent demethylation. In contrast the equivalent unmethylated nucleosides did not stimulate 2OG turnover indicating that the presence of a methyl group in the substrate is important in initiating oxidation of 2OG. Stimulation of 2OG turnover by 1-methyladenosine was highly dependent on the presence of a reducing agent, ascorbate or dithiothreitol. Following the observation that AlkB is inhibited by high concentrations of 2OG, analogues of 2OG, including 2-mercaptoglutarate, were found to specifically inhibit AlkB. The flavonoid quercetin inhibits both AlkB and the 2OG oxygenase factor-inhibiting hypoxia-inducible factor (FIH) in vitro. FIH inhibition by quercetin occurs in the presence of excess iron indicating a specific interaction, while the inhibition of AlkB by quercetin is, predominantly, due to nonspecific iron chelation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号