首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
Chytridiomycosis is a disease of amphibians caused by the chytrid fungus Batrachochytrium dendrobatidis. It can be highly virulent and is unusual in that it appears to drive many host species to local extinction during outbreaks. One mechanism that could facilitate this is the ability to grow saprophytically or on alternative hosts. This is common in other chytrids but has not been demonstrated for B. dendrobatidis in the field. B. dendrobatidis can grow on arthropod exoskeletons in the laboratory, and freshwater shrimp can be the most abundant animals in tropical rain forest streams. We therefore used diagnostic quantitative polymerase chain reaction to determine the infection status of freshwater shrimp from areas in which they are sympatric with frog species that have suffered declines in association with outbreaks of chytridiomycosis. We detected B. dendrobatidis on three individual shrimp belonging to two genera and collected from two widely separated streams. Two of the individuals had high levels of infection. This indicates that the presence of alternative hosts is likely to contribute to the extreme virulence of chytridiomycosis outbreaks in some systems. The presence of alternative hosts may allow B. dendrobatidis to remain in the environment after local extinctions of amphibian hosts, preventing the recovery of amphibian populations.  相似文献   

2.
Chytridiomycosis is a fatal disease of amphibians, caused by the amphibian chytrid Batrachochytrium dendrobatidis. The disease is unusual in that it may drive many amphibian species to local extinction during outbreaks. These dramatic declines in host population numbers could be facilitated if the pathogen can grow as a saprobe or on alternative hosts, a feature common to other chytrid species. This is also supported by in vitro work that demonstrates B. dendrobatidis can grow and reproduce in the absence of amphibian cells. In a previous study, B. dendrobatidis was detected on freshwater shrimp from rain forest streams in northern Queensland, Australia, using diagnostic PCR. We set out to confirm and further investigate the presence of B. dendrobatidis on crustaceans by carrying out more extensive sampling of shrimp in the field, experimental B. dendrobatidis infection trials using shrimp and crayfish, and PCR verification of the presence of B. dendrobatidis from shrimp samples that previously tested positive. We could not confirm the presence of B. dendrobatidis on shrimp, and report that original positive tests in shrimp reported by Rowley et al. (2006) were likely false. Thus, we suggest that shrimp may not be an important reservoir host for B. dendrobatidis.  相似文献   

3.
The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander''s skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.The amphibian fungal pathogen Batrachochytrium dendrobatidis causes a lethal skin disease that has caused substantial declines in amphibian populations (18). However, some species, such as the bullfrog (Rana catesbeiana) and the tiger salamander (Ambystoma tigrinum), are relatively asymptomatic when they are infected with this pathogen (4, 5). Variation in survival among species has been attributed to differences in innate immune factors, such as antimicrobial peptides (20) and skin-associated microbial species (8-11), as well as behavior (16). The presence of antifungal microbes is of particular interest because it suggests that these organisms are mutualistic associates of amphibian species. In addition, augmentation of the cutaneous microbial community by adding species of bacteria that inhibit B. dendrobatidis has the potential to provide resistance to chytridiomycosis (9).We have identified a number of bacteria associated with the skin of amphibians that inhibit B. dendrobatidis in vitro via secretion of antifungal metabolites (2, 3, 10, 11). The bacterial species used in this study, Janthinobacterium lividum, produces the anti-B. dendrobatidis metabolites violacein and indole-3-carboxaldehyde (MIC, 1.82 μM and 69 μM, respectively) (3). We have shown that violacein inhibits B. dendrobatidis in laboratory assays (3) and is strongly correlated with survival in vivo of the frog species Rana muscosa (9). Violacein was also present on three of seven wild-collected red-backed salamanders (Plethodon cinereus) at concentrations that inhibit B. dendrobatidis in vitro (3), suggesting that this salamander species has a mutualistic community of violacein-producing bacteria on its skin. In this study, we added J. lividum to salamander skins to generate a wide range of violacein concentrations in order to determine what concentration is needed to prevent mortality caused by chytridiomycosis in vivo.  相似文献   

4.
Chytridiomycosis is an amphibian skin disease that threatens amphibian biodiversity worldwide. The fungal agent of chytridiomycosis is Batrachochytrium dendrobatidis. There is considerable variation in disease outcomes such that some individuals and populations co-exist with the fungus and others quickly succumb to disease. Amphibians in populations that co-exist with the B. dendrobatidis have sublethal infections on their skins. Symbiotic skin bacteria have been shown in experiments and surveys to play a role in protecting amphibians from chytridiomycosis. Little is known about the mechanisms that antifungal skin bacteria use to ameliorate the effects of B. dendrobatidis. In this study, we identified that B. dendrobatidis isolate JEL 310 zoospores display chemotaxis, in the presence of two bacterially-produced metabolites (2,4-diacetylphloroglucinol and indole-3-carboxaldehyde). In the presence of either metabolite, B. dendrobatidis zoospores move more frequently away from the metabolite. Using parameters estimated from this study, a simple stochastic model of a random walk on a lattice was evaluated. The model shows that these individual behaviors over short time-scales directly lead to population behaviors over long time–scales, such that most zoospores will escape, or not infect a tryptone substrate containing the bacterially-produced metabolite, whereas many zoospores will infect the tryptone substrate containing no metabolite. These results suggest that amphibians that have skin bacteria produce antifungal metabolites that might be able to keep B. dendrobatidis infections below the lethal threshold and thus are able to co-exist with the fungus.  相似文献   

5.
Microbiomes associated with multicellular organisms influence the disease susceptibility of hosts. The potential exists for such bacteria to protect wildlife from infectious diseases, particularly in the case of the globally distributed and highly virulent fungal pathogen Batrachochytrium dendrobatidis of the global panzootic lineage (B. dendrobatidis GPL), responsible for mass extinctions and population declines of amphibians. B. dendrobatidis GPL exhibits wide genotypic and virulence variation, and the ability of candidate probiotics to restrict growth across B. dendrobatidis isolates has not previously been considered. Here we show that only a small proportion of candidate probiotics exhibited broad-spectrum inhibition across B. dendrobatidis GPL isolates. Moreover, some bacterial genera showed significantly greater inhibition than others, but overall, genus and species were not particularly reliable predictors of inhibitory capabilities. These findings indicate that bacterial consortia are likely to offer a more stable and effective approach to probiotics, particularly if related bacteria are selected from genera with greater antimicrobial capabilities. Together these results highlight a complex interaction between pathogens and host-associated symbiotic bacteria that will require consideration in the development of bacterial probiotics for wildlife conservation. Future efforts to construct protective microbiomes should incorporate bacteria that exhibit broad-spectrum inhibition of B. dendrobatidis GPL isolates.  相似文献   

6.
Symbiotic bacterial communities can protect their hosts from infection by pathogens. Treatment of wild individuals with protective bacteria (probiotics) isolated from hosts can combat the spread of emerging infectious diseases. However, it is unclear whether candidate probiotic bacteria can offer consistent protection across multiple isolates of globally distributed pathogens. Here, we use the lethal amphibian fungal pathogen Batrachochytrium dendrobatidis to investigate whether probiotic richness (number of bacteria) or genetic distance among consortia members influences broad‐scale in vitro inhibitory capabilities of probiotics across multiple isolates of the pathogen. We show that inhibition of multiple pathogen isolates by individual bacteria is rare, with no systematic pattern among bacterial genera in ability to inhibit multiple B. dendrobatidis isolates. Bacterial consortia can offer stronger protection against B. dendrobatidis compared to single strains, and this tended to be more pronounced for consortia containing multiple genera compared with those consisting of bacteria from a single genus (i.e., with lower genetic distance), but critically, this effect was not uniform across all B. dendrobatidis isolates. These novel insights have important implications for the effective design of bacterial probiotics to mitigate emerging infectious diseases.  相似文献   

7.
A serious disease of amphibians caused by the chytrid fungus Batrachochytrium dendrobatidis was first found in Japan in December 2006 in imported pet frogs. This was the first report of chytridiomycosis in Asia. To assess the risk of pandemic chytridiomycosis to Japanese frogs, we surveyed the distribution of the fungus among captive and wild frog populations. We established a nested PCR assay that uses two pairs of PCR primers to amplify the internal transcribed spacer (ITS) region of a ribosomal RNA cassette to detect mild fungal infections from as little as 0.001 pg (1 fg) of B. dendrobatidis DNA. We collected swab samples from 265 amphibians sold at pet shops, 294 bred at institutes and 2103 collected at field sites from northern to southwestern Japan. We detected infections in native and exotic species, both in captivity and in the field. Sequencing of PCR products revealed 26 haplotypes of the B. dendrobatidis ITS region. Phylogenetic analysis showed that three of these haplotypes were specific to the Japanese giant salamander (Andrias japonicus) and appeared to have established a commensal relationship with this native amphibian. Many other haplotypes were carried by alien amphibians. The highest genetic diversity of B. dendrobatidis was found in the American bullfrog (Rana catesbeiana). Some strains of B. dendrobatidis appeared to be endemic to Japanese native amphibians, but many alien strains are being introduced into Japan via imported amphibians. To improve chytridiomycosis risk management, we must consider the risk of B. dendrobatidis changing hosts as a result of anthropogenic disturbance of the host‐specific distribution of the fungus.  相似文献   

8.
Santiago R. Ron 《Biotropica》2005,37(2):209-221
One application of ecological niche modeling is predicting suitable areas for the establishment of invasive species. Herein, I model the fundamental niche of the chytrid fungus Batrachochytrium dendrobatidis, a pathogen linked to amphibian declines on several continents. Niche models were generated with the Genetic Algorithm of Rule‐Set Prediction using point distribution data of the pathogen and digital maps of environmental variables integrated in a GIS environment. The distribution of regions suitable for B. dendrobatidis in the New World is extensive and includes significant portions of: (1) Sierra Madre Occidental pine‐oak forest; (2) Sonoran and Sinaloan dry forest; (3) Veracruz moist forest; (4) Central America east from the Isthmus of Tehuantepec; (5) Caribbean Islands; (6) temperate forest in Chile and western Argentina south of latitude 30°S; (7) Andes above 1000 m of altitude in Venezuela, Colombia, and Ecuador; (8) eastern slopes of the Andes in Peru and Bolivia; (9) Brazilian Atlantic forest; (10) Uruguay, Paraguay, and northeastern Argentina; (11) southwestern and Madeira‐Tapajós Amazonian tropical rainforests. The regions with the highest suitability for B. dendrobatidis include habitats that contain the world's most diverse amphibian faunas. Models were built with New World localities, but also showed strong predictability for B. dendrobatidis localities in the Old World. Out of a total of 59 reported Old World localities for B. dendrobatidis, 56 occurred within regions with high predicted suitability. I also present analyses of the environmental envelope of B. dendrobatidis and discuss the implications of the results for the conservation of amphibians in the neotropics.  相似文献   

9.
Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an infectious disease that causes population declines of many amphibians. Cutaneous bacteria isolated from redback salamanders, Plethodon cinereus, and mountain yellow-legged frogs, Rana muscosa, inhibit the growth of Bd in vitro. In this study, the bacterial community present on the skin of P. cinereus individuals was investigated to determine if it provides protection to salamanders from the lethal and sub-lethal effects of chytridiomycosis. When the cutaneous bacterial community was reduced prior to Bd exposure, salamanders experienced a significantly greater decrease in body mass, which is a symptom of the disease, when compared to infected individuals with a normal bacterial community. In addition, a greater proportion of infected individuals with a reduced bacterial community experienced limb-lifting, a behavior seen only in infected individuals. Overall, these results demonstrate that the cutaneous bacterial community of P. cinereus provides protection to the salamander from Bd and that alteration of this community can change disease resistance. Therefore, symbiotic microbes associated with this species appear to be an important component of its innate skin defenses.  相似文献   

10.
Mexico, a rich country in terms of amphibian diversity, hosts about 375 described species. Population declines have been documented for several species where it is evident that their habitat is being destroyed or modified. However, other species which inhabit pristine areas are declining as well. It has been suggested that the chytrid fungus Batrachochytrium dendrobatidis (B.d.) may be one of the causes of the enigmatic declines in Mexico. We surveyed a total of 45 localities, in 12 states across Mexico, examining a total of 360 specimens representing 14 genera and 30 species. We also examined 91 specimens of Ambystoma mexicanum from a captive population in Mexico City as well as one Pachymedusa dacnicolor obtained in a pet shop. We used a two-tiered technique to detect the pathogen. For wild-caught specimens, we utilized light microscopy to identify presence of B.d. sporangia in amphibian skin. Then, to verify the infection, we used a quantitative real-time PCR assay on collected skin sections which is specific for B.d. For captive animals, we used a nonlethal version of the real-time PCR technique. We found evidence of B.d. infection in 111 animals comprising 14 species in 13 localities. A large percentage (84%) of Ambystoma mexicanum from the colony were infected with B.d. The two most highly infected individuals were the endangered Ambystoma mexicanum, from a captive colony, and Pachymedusa dacnicolor, purchased at a pet shop. The online version of this article (doi:) contains electronic supplementary material, which is available to authorized users.  相似文献   

11.
Parris MJ  Beaudoin JG 《Oecologia》2004,140(4):626-632
Despite ecologists increasingly recognizing pathogens as playing significant roles in community dynamics, few experimental studies have quantified patterns of disease impacts on natural systems. Amphibians are experiencing population declines, and a fungal pathogen (Batrachochytrium dendrobatidis; Chytridiomycota) is a suspected causal agent in many declines. We studied the effects of a pathogenic fungus on community interactions between the gray treefrog, Hyla chrysoscelis, and eastern newts, Notophthalmus viridescens. Recent studies have characterized chytridiomycosis as an emerging infectious disease, whose suspected rapid range expansion and widespread occurrence pose a significant risk for amphibian populations worldwide. We reared larvae in outdoor polyethylene experimental tanks and tested the effects of initial larval density, predator presence, and fungal exposure on Hyla recruitment and predator-prey interactions between Hyla and Notophthalmus. Newts reduced treefrog survival, and high intraspecific density decreased metamorphic body mass independent of B. dendrobatidis. The presence of fungi reduced treefrog body mass at metamorphosis by 34%, but had no significant main effect on survival or larval period length. B. dendrobatidis differentially affected larval development in the presence of predators; Hyla developed slower when reared with the pathogen, but only when newts were present. This significant predator-by-pathogen interaction suggests that the impact of chytridiomycosis on larval amphibians may be exacerbated in complex communities. Our data suggest that B. dendrobatidis effects on host life history may be complex and indirect. Direct measurements of the community-level effects of pathogens offer an important opportunity to understand a significant threat to global biodiversity—declining amphibian populations.  相似文献   

12.
Infectious diseases are a growing threat to biodiversity, in many cases because of synergistic effects with habitat loss, environmental contamination, and climate change. Emergence of pathogens as new threats to host populations can also arise when novel combinations of hosts and pathogens are unintentionally brought together, for example, via commercial trade or wildlife relocations and reintroductions. Chytrid fungus (Batrachochytrium dendrobatidis) and amphibian ranaviruses (family Iridoviridae) are pathogens implicated in global amphibian declines. The emergence of disease associated with these pathogens appears to be at least partly related to recent translocations over large geographic distances. We experimentally examined the outcomes of novel combinations of host populations and pathogen strains using the amphibian ranavirus Ambystoma tigrinum virus (ATV) and barred tiger salamanders (Ambystoma mavortium, formerly considered part of the Ambystoma tigrinum complex). One salamander population was highly resistant to lethal infections by all ATV strains, including its own strain, and mortality rates differed among ATV strains according to salamander population. Mortality rates in novel pairings of salamander population and ATV strain were not predictable based on knowledge of mortality rates when salamander populations were exposed to their own ATV strain. The underlying cause(s) for the differences in mortality rates are unknown, but local selection pressures on salamanders, viruses, or both, across the range of this widespread host–pathogen system are a plausible hypothesis. Our study highlights the need to minimize translocations of amphibian ranaviruses, even among conspecifc host populations, and the importance of considering intraspecific variation in endeavors to manage wildlife diseases.  相似文献   

13.
Currently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogen Batrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened by B. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual''s bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health.  相似文献   

14.
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial–fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.  相似文献   

15.
The emerging infectious disease chytridiomycosis is prevalent in Central and South America, and has caused catastrophic declines of amphibian populations in the Neotropics. The responsible organism, Batrachochytrium dendrobatidis, has been recorded on three West Indian islands, but the whole of the Caribbean region is predicted to offer a suitable environment for the disease. Monitoring the spread of chytridiomycosis is thus a priority in this region, which has exceptionally high levels of amphibian endemism. PCR analysis of 124 amphibian skin swabs in Tobago (Republic of Trinidad and Tobago) demonstrated the presence of B. dendrobatidis in three widely separated populations of the frog Mannophryne olmonae, which is listed as Critically Endangered on the basis of recent population declines. Chytridiomycosis is presently endemic in this species, with a prevalence of about 20% and no associated clinical disease. Increased susceptibility to chytridiomycosis from climate change is unlikely in amphibian populations in Tobago, as this island does not have high montane environments, but remains a possibility in the sister island of Trinidad. Preventing the spread of chytridiomycosis within and between these and other Caribbean islands should be a major goal of practical conservation measures for amphibians in the region.  相似文献   

16.
The sensitivity of amphibian species to shifts in environmental conditions has been exhibited through long-term population studies and the projection of ecological niche models under expected conditions. Species in biodiversity hotspots have been the focus of ample predictive modeling studies, while, despite their significant ecological value, wide-ranging and common taxa have received less attention. We focused on predicting range restriction of the spotted salamander (Ambystoma maculatum), blue-spotted salamander (A. laterale), four-toed salamander (Hemidactylium scutatum), and red-backed salamander (Plethodon cinereus) under future climate scenarios. Using bias-corrected future climate data and biodiversity database records, we developed maximum entropy (MaxEnt) models under current conditions and for climate change projections in 2050 and 2070. We calculated positivity rates of species localities to represent proportions of habitat expected to remain climatically suitable with continued climate change. Models projected under future conditions predicted average positivity rates of 91% (89–93%) for the blue-spotted salamander, 23% (2–41%) for the spotted salamander, 4% (0.7–9%) for the four-toed salamander, and 61% (42–76%) for the red-backed salamander. Range restriction increased with time and greenhouse gas concentration for the spotted salamander, four-toed salamander, and red-backed salamander. Common, widespread taxa that often receive less conservation resources than other species are at risk of experiencing significant losses to their climatic ranges as climate change continues. Efforts to maintain populations of species should be focused on regions expected to experience fewer climatic shifts such as the interior and northern zones of species' distributions.  相似文献   

17.
Chytridiomycosis is a globally emerging disease of amphibians and the leading cause of population declines and extirpations at species-diverse montane sites in Central America. We continued long-term monitoring efforts for the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) and for amphibian populations at two sites in western Panama, and we began monitoring at three new sites to the east. Population declines associated with chytridiomycosis emergence were detected at Altos de Campana National Park. We also detected Bd in three species east of the Panama Canal at Soberanía National Park, and prevalence data suggests that Bd may be enzootic in the lowlands of the park. However, no infected frogs were found further east at Tortí (prevalence <7.5% with 95% confidence). Our results suggest that Panama’s diverse and not fully described amphibian communities east of the canal are at risk. Precise predictions of future disease emergence events are not possible until factors underlying disease emergence, such as dispersal, are understood. However, if the fungal pathogen spreads in a pattern consistent with previous disease events in Panama, then detection of Bd at Tortí and other areas east of the Panama Canal is imminent. Therefore, development of new management strategies and increased precautions for tourism, recreation, and biology are urgently needed.  相似文献   

18.
Chytridiomycosis in Wild Frogs from Pico Bonito National Park, Honduras   总被引:1,自引:1,他引:0  
Almost half of the endemic species of Honduran amphibians have declining populations; some of which seem to be extinct since they have not been seen in several years in places where they were once common. Disappearances in pristine and protected habitats have occurred in several highland localities throughout the country. The highland amphibian fauna of Pico Bonito National Park declined sometime between 1989 and 1995. An amphibian chytrid fungus, Batrachochytrium dendrobatidis has been linked to similar declines in other neotropical regions. We checked 19 specimens for this disease, which were collected in the park in 2003. The only Rana maculata examined was found to be infected, as were three of the six Eleutherodactylus aurilegulus surveyed for the disease. Two of the infected E. aurilegulus were collected at 120 m elevation and showed strong infections. One of these was lethargic and did not react when it was collected in the field, although it was still alive. A complete necropsy could help determine if the B. dendrobatidis infection was responsible for these symptoms, and further research might show how susceptible E. aurilegulus is to this pathogen at low altitudes. More research should be focused on the distribution of this pathogen in Honduras, and on how this disease has affected the local amphibian fauna.  相似文献   

19.
Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host–microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization.  相似文献   

20.
To investigate the occurrence of the chytrid fungus Batrachochytrium dendrobatidis in Brazil, we conducted histological screenings of 96 preserved specimens of anurans collected at 10 sites in the Atlantic rain forest. Data show this fungus to be widely distributed. Infected specimens included Colostethus olfersioides (Dendrobatidae), Bokermannohyla gouveai and Hypsiboas freicanecae (Hylidae), as well as Thoropa miliaris and Crossodactylus caramaschii (Leptodactylidae), extending the area of B. dendrobatidis occurrence in Brazil approximately 1,600 km N, 200 km S, and 270 km E. The altitudinal range of the chytrid is broad, spanning from less than 100 m (Estação Ecológica Juréia-Itatins, Reserva Biológica do Tinguá) to about 2,400 m (Parque Nacional do Itatiaia). An infection record dating to 1981 roughly coincides with the time of the first observations of amphibian declines in the country. Widespread occurrence of B. dendrobatidis in the Atlantic Forest adds to the challenge of conserving an already endangered biome given the potential risk of further local biodiversity loss. Further research is needed to understand how environmental and genetic factors relate to chytridiomycosis in leading to or preventing local die-offs. Protected sites at mid and high elevations may be particularly threatened, while lowland populations may be functioning as reservoirs. Conservation efforts should also involve monitoring studies and habitat protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号