首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Summary Fifty eight mitochondrial mutants (p + mit- mutants), all deficient in cytochrome oxidase activity and previously assigned to the genetic region oxi3 on the mitochondrial DNA, were mapped by the method of petite deletion mapping.This procedure resulted in the identification of at least twenty one different classes of oxi3 mutants, which could be arranged in a linear order.Moreover, it provided a set of twenty three p - petite mutants, each containing a differentially deleted mit DNA segment included in the oxi3 region. The two sets of mutants, p + oxi3 - and p - oxi3 +, will be of interest for a further genetic and physical analysis of this mitochondrial DNA segment which spans over about ten thousand base pairs and controls the subunit I of cytochrome oxidase.  相似文献   

5.
6.
Summary The effects of the acridines euflavine and proflavine on mitochondrial DNA (mtDNA) replication and mutation inSaccharomyces cerevisiae have been compared. In contrast to previous results we found that under our conditions proflavine can indeed induce high levels (>80%) of petite mutants, although six times less efficiently than euflavine. The parameters measured for mutagenesis of the mitochondrial genome and inhibition of mtDNA replication in whole cells suggest that the modes of action of euflavine and proflavine are very similar. After extended (18h) treatment of growing cells with each drug the percentage loss of mtDNA or genetic loci was almost coincidental with the extent of petite induction.It was found that proflavine is equally as effective as euflavine in inhibiting mtDNA replication in isolated mitochondria in contrast to the differential between the drugs observed in vivo. However, proflavine and euflavine inhibit cellular growth at almost the same concentrations. It is therefore proposed that there is some intracellular permeability barrier which impedes proflavine access to the mitochondrial DNA replicating system.The petites induced by euflavine (and proflavine) are characterized by there being a preferential induction ofrho 0 petites lacking mtDNA as opposed torho - petites retaining mtDNA. This is in contrast to the relative proportions of such petites induced by ethidium bromide or berenil. A scheme for the production of petites by euflavine is presented, in which euflavine inhibits the replication of mtDNA, but does not cause direct fragmentation of mtDNA (unlike ethidium bromide and berenil). The proposed scheme explains the production of the high frequency ofrho o cells, as well as therho - cells induced by euflavine. The scheme also accounts for previous observations that euflavine only mutants growing cultures, and that the buds, but not mother cells, become petite.  相似文献   

7.
8.
9.
Hybridization saturation analyses of mitochondrial DNA from 11 petite clones genetically characterized with respect to chloramphenicol and erythromycin resistance markers, have been carried out with 11 individual mitochrondrial transfer RNAs. Mitochondrial tRNA cistrons were lost, retained, or amplified in different petite strains. In some cases hybridization levels corrected for kinetic complexity of the mtDNA3 were two- to threefold greater than that for grande mtDNA indicating selective amplification, or increased number of copies, of the segment of mtDNA containing that tRNA cistron. Hybridization levels corrected for reduced kinetic complexity of petite mtDNAs in many cases were only 1 to 10% of that for grande mtDNA suggesting a low level of intracellular molecular heterogeneity of mtDNA with respect to tRNA cistrons. Some petite clones that retained tRNA genes continued to transcribe mitochondrial tRNAs, since tRNA isolated from these strains could be aminoacylated with Escherichia, coli synthetases and hybridized with mtDNA. Hybridization data allow us to order several of the tRNA cistrons on the mitochondrial genome with respect to the chloramphenicol and erythromycin antibiotic resistance markers.  相似文献   

10.
Summary Mitochondrial DNA has been isolated from a cytoplasmic petite mutant of Saccharomyces cerevisiae which has retained only about 2% of the mitochondrial wild type genome. The denatured DNA was analyzed by agarose gel electrophoresis and a homogeneous, single band of DNA was found. Petite and wild type mitochondrial DNAs exhibited similar gel electrophoretic mobilities. Using denatured DNA from the E. coli phages T4 and T3 for comparison a molecular weight of 55×106 daltons has been calculated for the double-stranded petite mitochondrial DNA. On the basis of this observation most of the mitochondrial DNA of this petite mutant appeared to consist of a polymer of about 50 repeats to account for a size similar to that of the wild type molecule. Thus a regulatory mechanism might exist which keeps constant the physical size of the mitochondrial DNA molecule in spite of the elimination of large fractions of the wild type genome.Dedicated to Dr. Dr. h. c. Peter Michaelis on the occasion of his 75th birthday  相似文献   

11.
12.
We have determined the 903 bp nucleotide sequence of the mitochondrial DNA genome of a Saccharomyces cerevisiae petite mutant BB5. This petite, containing the 265 nucleotide ori1 region, is representative of a class of petites arising at exceptionally high frequency within the population of spontaneous petites derived from a particular mit- strain Mb12. The DNA sequences of both the ori1 region and the flanking intergenic regions have been compared to those of the corresponding regions of mtDNA in a previously reported petite strain, a1/1R/1 of Bernardi's laboratory, that has a similar (880 bp) repeat unit. The BB5 petite genome carries a canonical ori1 sequence that is identical in both petite mtDNAs, but the flanking intergenic sequences show significant differences between the two petite strains. The divergence is considered to arise from differences in the sequences flanking ori1 in the respective parent strains.  相似文献   

13.
Phadnis N  Sia RA  Sia EA 《Genetics》2005,171(4):1549-1559
Mitochondrial DNA deletions and point mutations accumulate in an age-dependent manner in mammals. The mitochondrial genome in aging humans often displays a 4977-bp deletion flanked by short direct repeats. Additionally, direct repeats flank two-thirds of the reported mitochondrial DNA deletions. The mechanism by which these deletions arise is unknown, but direct-repeat-mediated deletions involving polymerase slippage, homologous recombination, and nonhomologous end joining have been proposed. We have developed a genetic reporter to measure the rate at which direct-repeat-mediated deletions arise in the mitochondrial genome of Saccharomyces cerevisiae. Here we analyze the effect of repeat size and heterology between repeats on the rate of deletions. We find that the dependence on homology for repeat-mediated deletions is linear down to 33 bp. Heterology between repeats does not affect the deletion rate substantially. Analysis of recombination products suggests that the deletions are produced by at least two different pathways, one that generates only deletions and one that appears to generate both deletions and reciprocal products of recombination. We discuss how this reporter may be used to identify the proteins in yeast that have an impact on the generation of direct-repeat-mediated deletions.  相似文献   

14.
A new putative gene in the mitochondrial genome of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Y Colin  G Baldacci  G Bernardi 《Gene》1985,36(1-2):1-13
  相似文献   

15.
Mitochondrial DNA (mtDNA) from petite strain K45 ofSaccharomyces cerevisiae contains about 7% circular DNA molecules which comprise a simple oligomeric series based on a monomeric size of 1.7 kilobase pairs. Electrophoresis of K45 mtDNA on a polyacrylamide-agarose slab gel fractionates the mtDNA into a major band (containing linear DNA) and several faster running minor bands each containing particular size class of circular DNA molecules. From study of mtDNA from K45 and two other simple petites it was found that the mobility of circles is inversely proportional to the logarithm of the circle size. Polyacrylamide gel electrophoresis thus permits the separation of circular mtDNA from the linear mtDNA of simple petites, and physically resolves circles of different size from one another.  相似文献   

16.
Two mutants of Saccharomyces cerevisiae which show a loss of mitochondrial rutamycin-sensitive ATPase activity are described. Although phenotypically similar to mutants of the mitochondrial locus pho1 [F. Foury and A. Tzagoloff (1976) Eur. J. Biochem. 68, 113-119], these mutants define a second ATPase locus on the mitochondrial DNA (designated pho2), which is genetically unlinked to pho1. Analysis of recombination in crosses involving multiple antibiotic resistance markers indicates that the locus is in the segment of the genome between ery1 and oli2, very close to oli1. In fact it is proposed that the oli1 and pho2 mutations are in the same gene. Supporting evidence for this proposal includes: 1. The analysis of marker retention in petite mutants shows that the oli1 and pho2 loci were either retained or lost together in all cases. 2. Recombination frequencies of 0.05% or less are observed in crosses between the oli1 and pho2 loci. 3. When rho+ revertants are isolated from the pho2 mutants they frequently are oligomycin resistant. 4. pho2 mutants have an altered subunit 9 of the ATPase complex.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号