共查询到20条相似文献,搜索用时 0 毫秒
1.
The seasonal dynamics of the species structure of epiphytic yeasts on the leaves and in the flowers of 25 plant species was
studied throughout the period of their vegetation. It was shown that, on average for the vegetation period, the composition
of epiphytic yeast communities was nonspecific. The same species of epiphytic yeasts dominated on different plant species,
irrespective of their taxonomic identity and ecological peculiarities. However, different species of yeasts exhibited different
types of seasonal dynamics of relative abundance. Therefore, a combination of the dynamics of yeast species and the ontogenetic
cycles of plants creates a pattern of the dynamics of the epiphytic yeast population, which is unique for each plant species.
The species diversity of yeasts on the leaves of a plant is determined by the duration of its ontogenetic cycle: the longer
the vegetation of a plant, the higher the diversity of the epiphytic yeasts population. The greatest diversity of epiphytic
yeasts was revealed on the leaves of perennial hygrophytes and mesophytes; the minimal diversity, on ephemeroids and annuals
with a short ontogenetic cycle. 相似文献
2.
Ulrike Nolte 《Hydrobiologia》1991,222(3):197-211
Chironomid communities of mosses in a small upland stream in central Germany were highly dynamic across the year with respect to their abundance, biomass and dominant taxa. During 1988 semi-submersed mosses near a main spring and those occurring some 700 m downstream were compared with permanently submersed mosses in immediate vicinity of the downstream site. All the chironomids sampled were conspicuously small, with nearly 98% being less than 5 mm in length. A total of 65 chironomid species from 26 genera were found, with a higher diversity occurring near the source and a change in dominant taxa along the upper stream section. The mean abundance in permanently submersed mosses (250 larvae/10 cm2, n = 125) was about five times higher than in semi-submersed mosses. The maximum value of 830 larvae/10 cm2 (n = 1) is the highest chironomid density ever reported, which is explained by the sampling method used. The mean standing crop was also highest in permanently submersed mosses (1.5 mg AFDW/10 cm2 (n = 125)), even though the highest individual value was recorded in semi-submersed mosses near the spring (10.4 mg AFDW/10 cm2). The evidence suggested that the dominance of chironomid taxa depended mainly on the location of the moss along the stream, whereas abundance and biomass were determined mainly by constancy in the ambient discharge as well as the factors influenced by this (e.g. temperature, detritus deposition). A trend was seen towards a seasonal succession among the chironomid taxa colonizing lotic mosses. 相似文献
3.
Tristan Milhau Alice Valentini Nicolas Poulet Nicolas Roset Pauline Jean Coline Gaboriaud Tony Dejean 《Journal of fish biology》2021,98(2):387-398
As fish communities are a major concern in rivers ecosystems, we investigated if their environmental (e)DNA signals vary according to the sampling period or hydromorphological conditions. Three rivers were studied over a year using eDNA metabarcoding approach. The majority of the species (c. 80%) were detected all year round in two rivers having similar hydromorphological conditions, whereas in the river affected by an upstream lake waterflow, more species were detected sporadically (42%). For all the rivers, in more than 98% of the occasional detections, the reads abundance represented <0.4% of the total reads per site and per sampling session. Even if the majority of the fish communities remained similar over the year for each of the three rivers, specific seasonal patterns were observed. We studied if the waterflow or the reproduction period had an effect on the observed dynamics. Waterflow, which influences eDNA downstream transportation, had a global influence in taxonomic richness, while the fishes' reproductive period had only an influence on certain species. Our results may help selecting the best sampling strategy according to research objectives. To study fish communities at local scale, seasons of low waterflow periods are recommended. This particularly helps to restraint effects of external eDNA coming from connections with other aquatic environment (tributaries, lakes, wetlands, sewage effluents, etc.). To obtain a more integrative overview of the fish community living in a river basin, high waterflow or breeding seasons are preferable for enhancing species detection probability, especially for rare species. 相似文献
4.
The effect of mechanical wounding or foliar diseases caused by Sclerotinia homoeocarpa or Rhizoctonia solani on the epiphytic yeast communities on creeping bentgrass and tall fescue were determined by leaf washing and dilution plating. Total yeast communities on healthy bentgrass and tall fescue leaves ranged from 7.9 x 103 to 1.4 x 105 CFU.cm-2 and from 2.4 x 103 to 1.6 x 104 CFU.cm-2, respectively. Mechanically wounded leaves (1 of 2 trials) and leaves with disease lesions (11 of 12 trials) supported significantly larger communities of phylloplane yeasts. Total yeast communities on S. homoeocarpa infected or R. solani infected bentgrass leaves were 3.6-10.2 times and 6.2-6.4 times larger, respectively, than the communities on healthy leaves. In general, healthy and diseased bentgrass leaves supported larger yeast communities than healthy or diseased tall fescue leaves. We categorized the majority of yeasts as white-pigmented species, including Cryptococcus laurentii, Cryptococcus flavus, Pseudozyma antarctica, Pseudozyma aphidis, and Pseudozyma parantarctica. The percentage of pink yeasts in the total yeast community ranged from 2.6% to 9.9% on healthy leaves and increased to 32.0%-44.7% on S. homoeocarpa infected leaves. Pink-pigmented yeasts included Rhodotorula glutinis, Rhodotorula mucilaginosa, Sakaguchia dacryoidea, and Sporidiobolus pararoseus. Foliar disease significantly affected community size and composition of epiphytic yeasts on bentgrass and tall fescue. 相似文献
5.
The numbers of epiphytic yeasts on the leaves and flowers of 25 plant species throughout their vegetation period was determined. The numbers of yeasts on the leaves were found to change regularly throughout the year. The average dynamics for all of the plant species investigated included an increase in yeast numbers during spring and summer with the maximum in late autumn and early winter. The character of the yeasts' dynamics depends on the ecological characteristics of the plants and the duration of the ontogenesis of their leaves and flowers. Three types of dynamics of epiphytic yeasts were revealed: year-round with an increase in autumn-winter, year-round without visible changes, and seasonal with a terminal increase for annual plants. 相似文献
6.
The numbers of epiphytic yeasts on the leaves and flowers of 25 plant species throughout their vegetation period was determined. The numbers of yeasts on the leaves were found to change regularly throughout the year. The average dynamics for all of the plant species investigated included an increase in yeast numbers during spring and summer with the maximum in late autumn and early winter. The character of the yeasts’ dynamics depends on the ecological characteristics of the plants and the duration of the ontogenesis of their leaves and flowers. Three types of dynamics of epiphytic yeasts were revealed: year-round with an increase in autumn-winter, year-round without visible changes, and seasonal with a terminal increase for annual plants. 相似文献
7.
麦田昆虫群落的结构与时序动态 总被引:9,自引:2,他引:9
采用目测法和网捕法 ,通过对小麦整个生长季节内昆虫群落的系统调查 ,共查得昆虫11目 2 3科 36种 ,其中捕食性昆虫有 4目 5科 12种、寄生性昆虫有 2目 3科 4种、植食性昆虫有 5目 12科 15种、粪食性等其他类昆虫有 1目 3科 5种。在捕食性天敌昆虫中 ,瓢虫的种类和数量最多 ,其次为草蛉和食蚜蝇 ;在寄生性天敌昆虫中 ,蚜茧蜂为优势种 ,其次为寄蝇 ;在植食性昆虫中 ,麦长管蚜为绝对的优势种 ,其次为赤须盲蝽、灰飞虱和麦蓟马。天敌昆虫对害虫具有明显的跟随现象 ,不能有效地控制麦长管蚜的发生与危害。依据昆虫群落的组成与结构 ,结合小麦生育期 ,采用最优分割法将麦田昆虫群落动态划分为 5个阶段 ,并指出不同阶段昆虫群落特点及相应的害虫防治策略。 相似文献
8.
9.
A. R. BURGAZ E. FUERTES A. ESCUDERO 《Botanical journal of the Linnean Society. Linnean Society of London》1994,115(1):35-47
The Antitrichetalia curtipendulae epiphytic climax communities of Šmarda & Hadàč from the Spanish Mediterranean area have been classified by numerical and traditional floristic methods. Ninety-eight phytosociological relevés have been recorded from a number of Iberian forests. Our results indicate two clusters that can be easily related to two different alliances: Lobarion pulmonariae (Nephrometum resupinati) and Pterogonio gracile-Antitrichion californicae (Antitrichielum californicae). A phytogeographical and syntaxonomical discussion is followed by a suggested Red List of threatened lichens and bryophytes occurring in these communities in the Spanish Mediterranean area with the aim of advancing conservation of endangered and vulnerable species. 相似文献
10.
11.
Dynamics of the taxonomic structure of epiphytic bacterial communities of the rhizosphere and phyllosphere of seven weed species was studied. The major types of isolated organisms were identified using phenotypic and molecular biological approaches. Dispersion analysis revealed that the ontogenesis stage and plant organ were the factors with the greatest effect on the taxonomic structure of the communities. The dominant microorganisms of weeds were similar to those of cultivated plants. The minor components revealed in the spectra of bacterial communities of weeds belonged to poorly studied genera of chemolithotrophic proteobacteria. 相似文献
12.
麦田昆虫群落结构及多样性的季节动态 总被引:7,自引:2,他引:7
通过2年对麦田昆虫群落的系统调查,共查得昆虫11目、62科1、13种,其中植食类51种、捕食类23种、寄生类24种、腐食和食血类15种,种类数和个体数分别占群落总数的45.13,20.35,21.24,13.27%和92.89,2.19,3.63,1.35%。麦田昆虫群落可划分为4个营养层、6个功能团和19个类群,麦长管蚜Macrosiphum avenae(Fabricius)是绝对的优势种,其数量变动决定着总群落结构和多样性的季节动态。麦田昆虫群落多样性表现为前期和后期高、中期低的时间格局,类群多样性与物种多样性的变化趋势最为相似,可用类群多样性代替物种多样性进行群落分析。 相似文献
13.
Seasonal migration by larvae of an epiphytic chironomid 总被引:2,自引:0,他引:2
RYSZARD KORNIJÓW 《Freshwater Biology》1992,27(1):85-89
1. A clear seasonal alternation of Endochiranomus albipennis larvae between submerged plants and the bottom sediment was observed in the littoral of a deep mesotrophic and a shallow eutrophic lake. The analysis of change in larval density and of occurrence of pupae suggests that larvae migrated from plants to the bottom sediment in early autumn and back to the plants, where they pupate, in spring. 2. Up to 95% of the third and fourth instar larvae overwintered in the bottom sediment in special cocoons. Larvae staying in the sediment without cocoons were also dormant. The timing of cocoon formation was different in the two lakes. 3. Migration may have a significant influence on the seasonal changes in dominance structure and density of epiphytic and benthic faunas. 相似文献
14.
Analysis of an epiphytic yeast population on the leaves of the evergreen common wood sorrel Oxalis acetosella L. throughout a year showed that the density and the species composition of this population underwent regular seasonal changes. There were almost no yeasts on the young spring leaves. However, the yeast population on the mature leaves tended to increase in the autumn, reaching a maximum after the formation of continuous snow cover. Then the yeast population on the leaves tended to decrease, reaching a minimum in the spring. The species diversity of the yeasts was maximum in the autumn. The population of the epiphytic yeast species Cystofilobasidium capitatum, Rhodotorula fujisanensis, Leucosporium scottii, and Cryptococcus flavus peaked in the autumn. On the other hand, the population of the widespread epiphytic species Cryptococcus laurentii on the wood sorrel leaves peaked in January. The relative abundance of the red-pigmented phytobionts Rhodotorula glutinis and Sporobolomyces roseus virtually did not change throughout the year. The relative abundance of the euribiotic species Cryptococcus albidus showed irregular monthly variations. The data obtained show that the epiphytic microbial population of various plants can be comprehensively studied only by analyzing this population throughout the vegetative period of the plants. 相似文献
15.
Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland 总被引:4,自引:0,他引:4
Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected. 相似文献
16.
Seasonal dynamics of the zoobenthic communities in the mesohaline zone of the Loire estuary (France)
The application of correspondence factorial analysis to four types of sediment in the upper reaches of the Loire estuary enabled the significance of environmental factors in the spatial distribution, abundance and seasonal dynamics of the biotic communities to be determined. In coarse sand, the communities are stable but species are few in number and population densities are low. In muddy sediments (from muddy sand to fluid mud) population densities are high but undergo seasonal fluctuations due to changes in the hydrological regime (especially the dissolved oxygen regime). This is true for the composition of the biotic communities. The oligohaline phase, in which the fluvial element is predominant, is characterized by abundance maxima due to freshwater species. The mesohaline phase, in which the marine element is predominant, exerts a restrictive action on population densities; certain species are supplanted by others, their development being governed by the quality of the environment. 相似文献
17.
Golubev VI Kulakovskaia TV Shashkov AS Kulakovskaia EV Golubev NV 《Mikrobiologiia》2008,77(2):201-206
The yeast Pseudozyma graminicola isolated from plants inhibited growth of almost all ascomycetes and basidiomycetes tested (over 270 species of ca. 100 genera) including pathogenic species. This yeast secreted a fungicidal agent, which was identified as a glycolipid composed of cellobiose residue with two O-substituents (acetyl and 3-hydroxycaproic acid) and 2,15,16-trihydroxypalmitic acid. The release of ATP from the glycolipid-treated cells indicated that this glycolipid impaired the permeability of the cytoplasmic membrane. Basidiomycetes were more sensitive to the cellobiose lipid than ascomycetes. 相似文献
18.
Jun Wang Jiancheng Hu Tao Tang Jani Heino Xiaoming Jiang Zhengfei Li Zhicai Xie 《Ecology and evolution》2020,10(2):692-704
Identifying seasonal shifts in community assembly for multiple biological groups is important to help enhance our understanding of their ecological dynamics. However, such knowledge on lotic assemblages is still limited. In this study, we used biological traits and functional diversity indices in association with null model analyses to detect seasonal shifts in the community assembly mechanisms of lotic macroinvertebrates and diatoms in an unregulated subtropical river in China. We found that functional composition and functional diversity (FRic, FEve, FDis, MNN, and SDNN) showed seasonal variation for macroinvertebrate and diatom assemblages. Null models suggested that environmental filtering, competitive exclusion, and neutral process were all important community assembly mechanisms for both biological groups. However, environmental filtering had a stronger effect on spring macroinvertebrate assemblages than autumn assemblages, but the effect on diatom assemblages was the same in both seasons. Moreover, macroinvertebrate and diatom assemblages were shaped by different environmental factors. Macroinvertebrates were filtered mainly by substrate types, velocity, and CODMn, while diatoms were mainly shaped by altitude, substrate types, and water quality. Therefore, our study showed (a) that different biological assemblages in a river system presented similarities and differences in community assembly mechanisms, (b) that multiple processes play important roles in maintaining benthic community structure, and (c) that these patterns and underlying mechanisms are seasonally variable. Thus, we highlight the importance of exploring the community assembly mechanisms of multiple biological groups, especially in different seasons, as this is crucial to improve the understanding of river community changes and their responses to environmental degradation. 相似文献
19.
Junker RR Loewel C Gross R Dötterl S Keller A Blüthgen N 《Plant biology (Stuttgart, Germany)》2011,13(6):918-924
The epiphytic bacterial communities colonising roots and leaves have been described for many plant species. In contrast, microbiologists have rarely considered flowers of naturally growing plants. We identified bacteria isolated from the surface of petals and leaves of two plant species, Saponaria officinalis (Caryophyllaceae) and Lotus corniculatus (Fabaceae). The bacterial diversity was much lower on petals than on leaves of the same plants. Moreover, the bacterial communities differed strongly in composition: while Pseudomonadaceae and Microbacteriaceae were the most abundant families on leaves, Enterobacteriaceae dominated the floral communities. We hypothesise that antibacterial floral volatiles trigger the low diversity on petals, which is supported by agar diffusion assays using substances emitted by flowers and leaves of S. officinalis. These results suggest that bacteria should be included in the interpretation of floral traits, and possible effects of bacteria on pollination are proposed and discussed. 相似文献
20.
Tree species differ in longevity, canopy structure, and bark texture, chemistry and water storage. Tree species-specific traits play a role in shaping epiphytic vegetation and likely influence the community assembly of organisms feeding on epiphytes. Lichenivorous gastropods, species with calcium-rich shells in particular, need calcium and likely occur more abundantly in and around tree species with high available calcium. We quantified gastropod grazing on the epiphytic lichens Lobaria pulmonaria and Lobaria scrobiculata transplanted to blocks of adjacent trunks of Acer platanoides, Quercus robur and Tilia cordata. We tested the hypothesis that tree species known to have more available Ca, exhibit more grazing damage on transplanted lichens than trees with lower Ca-availability. The grazing pressure was 1.6–1.8 times higher for lichen transplants on Acer and Tilia known to produce litter with easily soluble Ca than on Quercus, which binds Ca as oxalate. Trees with a high grazing pressure on transplants had greater natural abundance of Lobaria virens than of L. pulmonaria. Gastropods preferred L. scrobiculata to L. pulmonaria, evidenced by more observed grazing marks and greater measured biomass loss. We attribute this difference to the lower concentration of carbon-based secondary compounds in L. scrobiculata. However, the strength of the preference varied between the three tree species receiving lichen transplants and was strongest on A. platanoides, while gastropods on T. cordata grazed equal amounts of each transplanted lichen. In conclusion, tree species influenced grazing patterns of gastropods on epiphytic lichens. In addition to bark pH and other factors, we have shown that tree species-specific differences in grazing pressure play a role in shaping the epiphytic macrolichen community. 相似文献