首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Joint cultivation of the dominant strains of acetogenic, sulfate-reducing and methanogenic microorganisms isolated from water samples of the North Stavropol underground gas storage facility (UGSF) was carried out for revealing their probable trophic relationships. It was shown that acetogenic strains Eubacterium limosum AG12 and Sporomusa sphaeroides AG8-2 growing on methanol could form a considerable pool of hydrogen, which may support development of hydrogenotrophic cultures, the methanogen Methanobacterium formicicum MG134, or the sulfate reducer Desulfovibrio desulfuricans SR12. Growth of this sulfate-reducing strain was not stimulated under joint cultivation with Methanosarcina barkeri MGZ3 on methanol, probably due to its inability to take up low hydrogen concentrations observed during methanosarcina development. The results show that acetogens in the UGSF system are the most important consumers of methanol and hydrogen and after exhaustion of the latter and switching over to methanol utilization they can supply hydrogen to other microorganisms, including methanogens and sulfate reducers. The role of methanosarcina in the UGSF increases as the hydrogen and CO2 reserves are exhausted, and methanogenesis on methanol becomes the main way of its destruction.  相似文献   

2.
3.
High methanol and acetate concentrations (up to 12 and 14 g l−1, respectively) were found in water samples collected at different objects of the North Stavropol underground gas storage facility (UGSF), and significant seasonal variations in the content of these compounds were revealed. The dominant anaerobic microorganisms isolated from these samples during the study belonged to acetogens, methanogens, and sulfate reducers. The results of 16S rRNA gene sequencing and analysis of the physiological properties showed that the isolates were close to the species of Eubacterium limosum, Sporomusa sphaeroides, Methanosarcina barkeri, Methanobacterium formicicum, and Desulfovibrio desulfuricans. The isolated organisms, except for Methanobacterium formicicum, were capable of methylotrophic growth. All strains were characterized by resistance to high methanol concentrations (up to 40–50 g l−1). Their other energy substrate was hydrogen. The combination of the growth characteristics of these strains (pH, temperature, and salinity ranges) was shown to correspond to the ecological situation observed in the UGSF. The results of investigation of the isolated strains suggest that organic acids (acetate, butyrate) found in high concentrations in the initial samples are metabolic products of the revealed acetogens. Based on the established biological peculiarities of the isolated strains of methanogens, acetogens, and sulfate-reducing bacteria, these microorganisms may be considered as the main agents of anaerobic transformation of methanol and some other organic and inorganic compounds in UGSFs.  相似文献   

4.
The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 x 10(6) cells/ml. Aerobic organotrophs (including hydrocarbon- and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.  相似文献   

5.
The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 × 106 cells/ml. Aerobic organotrophs (including hydrocarbon-and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.  相似文献   

6.
The liquid phase of different units of an underground gas storage (UGS) in the period of gas injection was studied with respect to its hydrochemical composition and characterized microbiologically. The presence of viable aerobic and anaerobic bacteria was revealed in the UGS stratal and associated waters. An important source of microorganisms and biogenic elements in the ecosystem studied is water and various technogenic admixtures contained in trace amounts in the gas entering from the gas main in the period of gas injection into the storage. Owing to this fact, the bacterial functional diversity, number, and activity are maximal in the system of gas treatment and purification and considerably lower in the observation well zone. At the terminal stages, the anaerobic transformation of organic matter in the UGS aqueous media occurs via sulfate reduction and methanogenesis; exceptionally high rates of these processes (up to 4.9 x 10(5) ng S(2-)l(-1) day(-1) and 2.8 x 10(6) nl CH4 l(-1) day(-1), respectively) were recorded for above-ground technological equipment.  相似文献   

7.
The liquid phase of different units of an underground gas storage (UGS) in the period of gas injection was studied with respect to its hydrochemical composition and characterized microbiologically. The presence of viable aerobic and anaerobic bacteria was revealed in the UGS stratal and associated waters. An important source of microorganisms and biogenic elements in the ecosystem studied is water and various technogenic admixtures contained in trace amounts in the gas entering from the gas main in the period of gas injection into the storage. Owing to this fact, the bacterial functional diversity, number, and activity are maximal in the system of gas treatment and purification and considerably lower in the observation well zone. At the terminal stages, the anaerobic transformation of organic matter in the UGS aqueous media occurs via sulfate reduction and methanogenesis; exceptionally high rates of these processes (up to 4.9 × 105 ng S2? l?1 day?1 and 2.8 × 106 nl CH4 l?1 day?1, respectively) were recorded for above-ground technological equipment.  相似文献   

8.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

9.
A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.  相似文献   

10.
W A Daily  C E Higgens 《Cryobiology》1973,10(5):364-367
Methods are described which permit the rapid preparation and retrieval of suspensions of microorganisms stored in the gas space of a liquid nitrogen refrigerator.Inocula are currently used for assay plates, turbidimetric assays, bioautograph plates, and various fermentation processes. The most suitable suspending agents, 10% glycerol with 5% of either lactose, maltose, or raffinose, were devised by determining viabilities from alternate freezing and thawing of cell suspensions.Four milliliters each of concentrated cell suspensions were pipetted into cotton-plugged or plastic-capped glass tubes (13 × 100 mm). After rapid noncontrolled freezing in the nitrogen gas phase, the tubes were stored horizontally either in test-tube racks or in bulk containers.Frozen suspensions of vegetative cells of some algae, many genera of bacteria, as well as spores, vegetative cells, and fragmented mycelia of streptomycetes and fungi have been conveniently prepared from either agar or broth cultures. Sufficient inocula have been prepared to be used for periods of a few weeks to several years.  相似文献   

11.
ABSTRACT

To produce processed cheese turning hardly brown during transportation and storage at room temperature, natural cheese showing less discoloration should be used as a raw material. The purpose of this study was to clarify the relationship between the lactose utilization of lactic acid bacteria and the browning of cheese during storage. Three type-cultures (Lactobacillus plantarum and Streptococcus thermophilus) and five isolates from Japanese pickles (Lactobacillus spp.) were used. Cheese curds inoculated with these bacteria were prepared and stored. The L. plantarum-inoculated curds showed smaller ΔE-values after storage, an indicator for the browning, compared to the others. Accumulation of galactose was observed in the curd to which S. thermophilus was inoculated. The sample showed larger ΔE-value after storage. These results showed the lactose utilization of bacteria affected galactose concentration in cheese and its browning during storage. L. plantarum might be a good starter for preparing cheese turning hardly brown.  相似文献   

12.
Currently available microbiological techniques are not designed to deal with very slowly growing microorganisms. The enrichment and study of such organisms demands a novel experimental approach. In the present investigation, the sequencing batch reactor (SBR) was applied and optimized for the enrichment and quantitative study of a very slowly growing microbial community which oxidizes ammonium anaerobically. The SBR was shown to be a powerful experimental set-up with the following strong points: (1) efficient biomass retention, (2) a homogeneous distribution of substrates, products and biomass aggregates over the reactor, (3) reliable operation for more than 1 year, and (4) stable conditions under substrate-limiting conditions. Together, these points made possible for the first time the determination of several important physiological parameters such as the biomass yield (0.066 ± 0.01 C-mol/mol ammonium), the maximum specific ammonium consumption rate (45 ± 5 nmol/mg protein/min) and the maximum specific growth rate (0.0027 · h−1, doubling time 11 days). In addition, the persisting stable and strongly selective conditions of the SBR led to a high degree of enrichment (74% of the desired microorganism). This study has demonstrated that the SBR is a powerful tool compared to other techniques used in the past. We suggest that the SBR could be used for the enrichment and quantitative study of a large number of slowly growing microorganisms that are currently out of reach for microbiological research. Received: 14 May 1998 / Received last revision: 30 July 1998 / Accepted: 31 July 1998  相似文献   

13.
The bed expansion characteristics of a fluidized bed containing bacterial granules have been studied. These biogranules were obtained from an anaerobic hybrid reactor, which uses biogranules (without carrier particle) in fluidized condition. The settling velocity study of biogranules has shown that the drag coefficient of biogranule is greater than that of the rigid particle at the same Reynolds number. A new correlation based on this finding has been developed. The bed expansion study has demonstrated that a linear relationship exists between the natural logarithm of bed porosity and the natural logarithm of upflow superficial liquid velocity for the bed containing either a particular fraction of biogranule size or biogranules with wide size distribution. For a fluidized bed having a particular granule size, the bed porosity, and liquid superficial velocity could be related by the classic equation suggested by Richardson and Zaki (1954). The characteristic parameter of this correlation, the slope of the line n, has been related with Reynolds number. The intercept of the line gave a smaller value than the unhindered settling velocity of the particle. For fluidized bed having wide size distribution, the characteristic parameter n could not be related to Reynolds number. But the correlation suggested for single biogranule size has been found to predict n value with an average error of 2.3%.  相似文献   

14.
The electron microscopic study of thin sections and positively stained specimens of cells taken from particular cocultures of Lactobacillus acidophilus D75, Lactobacillus casei YIT 9018, Shigella flexnery 2a, Bacillus subtilis ATCC 6633, and Staphylococcus aureus ATCC 25923 (some of these bacteria are antagonistic to others) showed the presence of specific ultrastructural elements indicating cell specialization and cooperation. The responses of antagonistic bacteria manifested themselves at the cellular and population levels.  相似文献   

15.
The electron microscopic study of thin sections and positively stained specimens of cells taken from particular cocultures of Lactobacillus acidophilus D75, Lactobacillus casei YIT 9018, Shigella flexnery 2a, Bacillus subtilis ATCC 6633, and Staphylococcus aureus ATCC 25923 (some of these bacteria are antagonistic to others) showed the presence of specific ultrastructural elements indicating cell specialization and cooperation. The responses of antagonistic bacteria manifested themselves at the cellular and population levels.  相似文献   

16.
17.
Natural antifreeze proteins (AFPs) not only inhibit freezing at high subzero temperatures; they have the additional properties of inhibiting the recrystallization of ice during warming and of preventing devitrification. The natural AFP that occurs in the roots of cold-acclimated carrots can be extracted reasonably simply and is non-toxic: it was selected for study as a possible ingredient of the vitrification mixtures that are being developed for use in tissue cryopreservation. For this application, it would be essential for the AFP to remain active during prolonged storage at very low temperatures. For logistic reasons, it would also be essential to have an effective method of storage of the purified AFP itself. In this study, carrot AFP was isolated and purified, and its ability to inhibit recrystallization was monitored over 40 weeks of storage at -80 or -196 degrees C. The data revealed a progressive decrease in activity during storage, reaching half the original activity in 10-20 weeks and only 2-3% of the original activity at 40 week. These data suggest that carrot AFP will not be effective in tissue cryopreservation.  相似文献   

18.
Isolation and characterization of a new, obligatory, anaerobic, methylotrophic, homoacetogenic bacterium is described. This bacterium is a mesophilic, motile, slightly curved rod that demonstrated a negative Gram reaction, formed spherical, (sub)terminal spores and performed a homoacetic fermentation with methanol, a CO2–2H2-gas mixture, glucose or fructose, respectively, as the substrate. The methanol fermentation proceeded only when a suitable amount of NaHCO3 was available in the nutrient solution supplied.  相似文献   

19.
20.
Understanding the foraging ecology and diet of animals can play a crucial role in conservation of a species. This is particularly true where species are cryptic and coexist in environments where observing feeding behaviour directly is difficult. Here we present the first information on the foraging ecology of a recently identified species of dolphin (Southern Australian bottlenose dolphin (SABD)) and comparisons to the common bottlenose dolphin (CBD) in Victoria, Australia, using stable isotope analysis of teeth. Stable isotope signatures differed significantly between SABD and CBD for both δ(13)C (-14.4‰ vs. -15.5‰ respectively) and δ(15)N (15.9‰ vs. 15.0‰ respectively), suggesting that the two species forage in different areas and consume different prey. This finding supports genetic and morphological data indicating that SABD are distinct from CBD. In Victoria, the SABD is divided into two distinct populations, one in the large drowned river system of Port Phillip Bay and the other in a series of coastal lakes and lagoons called the Gippsland Lakes. Within the SABD species, population differences were apparent. The Port Phillip Bay population displayed a significantly higher δ(15)N than the Gippsland Lakes population (17.0‰ vs. 15.5‰), suggesting that the Port Phillip Bay population may feed at a higher trophic level--a result which is supported by analysis of local food chains. Important future work is required to further understand the foraging ecology and diet of this newly described, endemic, and potentially endangered species of dolphin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号