首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed and evaluated methods of culturing defined stromal and epithelial populations of normal human breast cells. These cell populations were used to generate radiation dose/survival curves. The epithelial cell population required specific hormones, growth factors, and conditioned media, as well as fibroblast feeder layers for clonal growth. Stromal cells grew well in a less complex medium. The stromal and parenchymal cell populations of the normal human breast were characterized by light and electron microscopy, immunohistochemical human fibronectin staining, gamma glutamyltranspeptidase histochemical staining, and cell sizing. Survival curves were generated using cells from four donors. The average D0 for epithelial cells was 122 cGy, with an average n value of 2.4. The average D0 and n values for stromal cells were 114 cGy and 2.0. The survival of human breast epithelial cells is compared to that of the cells of the rat mammary gland. The D0 values of both species are essentially the same, while the n value for human epithelial cells is lower. This difference in the n value may be a species specific response to radiation, or may merely reflect a difference in the two assay systems used to generate the survival curves.  相似文献   

2.
3.
A. V. Akleyev 《Biophysics》2010,55(1):128-141
Reviewed are radiobiological data on the emergence of tissue reactions that may determine the course and outcome of human chronic irradiation. The main mechanisms of the reaction of hemopoietic, immune, reproductive, endocrine, respiratory systems and skin to long-term and fractionated exposure to ionizing radiation are considered. The problem of developing a new approach to threshold dose estimation for chronic exposure effects is discussed.  相似文献   

4.
5.
6.
A new model for the survival of bacteria exposed to ionizing radiation is constructed in the framework of a target theory based on microdosimetric concepts, where single- and double-strand breaks of DNA and their repair in vivo can be described consistently in terms of the microdosimetric quantity j (number of effective primary events per track per target). In this model, the ability of cells to repair DNA damage is taken into consideration in terms of the repair capacities for single- and double-strand breaks of DNA, xi 1 and xi 2 (0 less than or equal to xi 1, xi 2 less than or equal to 1). To apply this model to Escherichia coli K-12 strains with different repair abilities, values of the repair capacity for single-strand breaks, xi 1, were derived from experimental survival curves. The theoretical survival curves for 60Co gamma rays were found to be effectively insensitive to the value of xi 2. Experimental survival curves for the wild-type, uvr, and rec strains of E. coli K-12 were well reproduced in this model. From these results, it is concluded that the theoretical formulation for the survival fraction of bacteria can afford a quantitative method for analysis of the repair process for radiation-induced single-strand breaks in DNA in vivo.  相似文献   

7.
Summary Existing mathematical formulations to predict the frequency of radiation induced chromosome aberrations in 2nd post-irradiation division are based on the Poisson distribution [3, 4]. Meanwhile several studies have shown that intercellular distributions exist, deviating from Poisson. In the present study a modified model was developed which permits the application of empirical distributions. Transmission and survival parameters of aberrations can be iteratively computed. A general formula was derived for the calculation of cell survival from 1st to 2nd division.  相似文献   

8.
Cell survival and radiation induced chromosome aberrations   总被引:1,自引:0,他引:1  
Human peripheral lymphocytes were irradiated in whole blood with 0.5-4.0 Gy of 220 kVp X-rays and the frequency of chromosome aberrations was determined in 1st or 2nd division metaphases discriminated by fluorescence plus giemsa staining. Using the empirical distributions of aberrations among cells, cell survival and transmission of aberrations were investigated. Considering both daughter cells, we found that 20% of fragments and 55% of dicentrics or ring chromosomes are lost during the 1st cell division; i.e. cell survival rate from 1st to 2nd generation is mainly influenced by anaphase bridging of these two-hit aberrations. Cell survival to 2nd mitosis was calculated considering this situation and compared with the survival derived from the fraction of M 1 cells without unstable aberrations. The resulting shouldered survival curves showed significantly different slopes, indicating that cell reproductive death is overestimated in the latter approach.  相似文献   

9.
Recent experiments concerning the survival of monolayer cells irradiated by different parts of ion Bragg peaks opened a way to a deeper mechanistic understanding of cell inactivation. A new theoretical formula for survival curves has been derived reflecting two basic phases of the given mechanism, i.e. energy transfer to a cell nucleus and subsequent biological effect (depending on the amount of imparted energy). The survival ratio for a given dose has been expressed as a function of inactivation probabilities of individual cells after different numbers of nucleus hits (a given amount of energy being transferred to a cell nucleus in each ion traversal). Having used the experimental data for V79 cells irradiated by protons, deuterons and helium ions in different parts of Bragg peaks preliminary values of these inactivation probabilities for individual cells at different LET values have been established.  相似文献   

10.
11.
A theory of cell survival after irradiation has been developed, considering the cell as composed of two compartments with different sensitivities and taking into account recovery phenomena. Expressions are obtained for the probabilities that the cell will be in a survival state or damaged state or will function with reduced efficiency.  相似文献   

12.
A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions, which is known to be important in some situations.  相似文献   

13.
14.
A monolayer of HeLa cells, at the stationary phase of growth, exposed to He-Ne laser radiation (632.8 nm; 100 J/m2) either 5 min or 60 min prior to gamma irradiation (0.1-10 Gy; 6.75 Gy/min), or 5 min after irradiation has been investigated. With a 5-min interval between irradiation sessions (both sequences) the survival curves are virtually the same as those for gamma-irradiated cells only. With He-Ne laser radiation delivered 60 min before gamma irradiation with doses exceeding 5 Gy, a fraction of radioresistant cells is identified whose D0 is almost twice as high as D0 of basic cell mass (3.6 and 1.7 Gy respectively. The survival curve becomes a two-component one. A hypothesis is proposed that He-Ne laser radiation activates, in some cells, the processes that promote the repair of radiation damages.  相似文献   

15.
16.
Radiation-induced oral mucositis is the most common complication for patients who receive head/neck radiotherapy. Nicotinamide adenine dinucleotide (NAD+) is vital for DNA damage repair under ionizing radiation, through functioning as either the substrate for protein poly(ADP-ribosyl)ation at DNA break sites or the cofactor for multiple DNA repair-related enzymes, which therefore can result in a significant consumption of cellular NAD+ during DNA repair. Mammalian cells produce NAD+ mainly by recycling nicotinamide via the salvage pathway, in which the rate-limiting step is governed by nicotinamide phosphoribosyltransferase (NAMPT). However, whether NAMPT is co-opted under ionizing radiation to timely fine-tune NAD+ homeostasis remains elusive. Here we show that ionizing radiation evokes NAMPT activation within 30 min without apparent changes in its protein expression. AMPK rapidly phosphorylates NAMPT at S314 under ionizing radiation, which reinforces the enzymatic activity of NAMPT by increasing NAMPT binding with its substrate phosphoribosyl pyrophosphate (PRPP). AMPK-mediated NAMPT S314 phosphorylation substantially restores NAD+ level in the irradiated cells and facilitates DNA repair and cell viability. Our findings demonstrate a new post-translational modification-based signalling route, by which cells can rapidly orchestrate NAD+ metabolism to support DNA repair, thereby highlighting NAMPT as a potential target for the prevention of ionizing radiation-induced injuries.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号