首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically ‘lower termites’ are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood‐feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus‐level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host‐specific distribution of the bacterial lineages in termite guts are best explained by diet‐related differences in the availability of microhabitats and functional niches.  相似文献   

2.
Termites are more abundant in the warmer lower latitudinal regions of the earth. Within these broad geographic regions, however, the precise nature of the factors influencing termite abundance is poorly understood. In this paper I have examined the abundance of detritivorous, mound-building termites and certain aspects of the climate, soils and vegetation at 14 sites in tropical northeastern Australia. No relationship between termite mound density and the particle-size characteristics of surface soil horizons, plant available phosphorous or rainfall was found. Microbial biomass carbon level of the surface soil was found to have a strong negative relationship with termite mound numbers. The negative interaction between the soil microbial population and termites may be due to the limiting effect of the organic matter processing capacity of the soil microbial population on the success of termites in occupying the decomposer niche in any particular area. Microbial biomass may therefore be a major factor influencing termite abundance in tropical Australian landscapes and elsewhere.  相似文献   

3.
Subterranean termites construct complex tunnel networks for foraging. During travel in the tunnels, termites often encounter one another when passing in opposite directions. Such encounters are likely to affect the “movement efficiency,” which is the time required for a termite to travel a certain distance in a tunnel. In this study, we explored how individual–individual encounters affect movement efficiency in tunnels by measuring the time (τ) taken by two termites to pass one another in tunnels of different curvatures. Artificial tunnels of 5 cm in length and variable widths (W) of 2, 3, or 4 mm were made. Tunnel distance (D) was 2, 3, 4, or 5 cm. When D had a higher value, curvature was lower. When W = 2, τ was significantly shorter in the tunnel with D = 5 than in tunnels of D = 2, 3, or 4, whereas τ was statistically the same for D = 2, 3 and 4. When W = 3, τ was shorter in the tunnel with D = 5 than for D = 3 and 4, while τ was longer in the tunnel with D = 2 than for D = 3 and 4. When W = 4, τ was longer in the tunnels with D = 2 and 3 than for D = 4 and 5. Based on these observations, 3 types of termite behavior were identified: biased walking, backward walking, and zigzag walking. We considered these results in relation to foraging efficiency.  相似文献   

4.
受人类活动干扰的增加,亚热带森林频繁转换为次生林和人工林,可能显著影响土壤无脊椎动物群落结构及其生态功能,但当前的认识并不一致。因此,于2022年7月调查了亚热带天然常绿阔叶林转换为次生林、米槠人工林、杉木人工林后土壤无脊椎动物群落结构特征。共捕获土壤无脊椎动物659只,丰度为26540只/m2,隶属1门6纲13目59科,其中蚁科和球角 虫 兆 科为优势类群。森林转换改变了土壤无脊椎动物群落组成和多样性。天然林向米槠人工林和杉木人工林转换后,土壤无脊椎动物丰度和类群均明显降低,其中大型土壤无脊椎动物丰度的响应更为敏感,在2种林型中分别显著降低了33.58%和36.53%。尽管林型转换对土壤无脊椎动物群落多样性指数无显著影响,但改变了土壤无脊椎动物群落组成,其中天然林与杉木人工林群落组成极不相似(J < 0.25),等节 虫 兆 科为杉木人工林优势类群,占比达到59.84%。冗余分析显示,土壤湿度、凋落物现存量和凋落物磷含量是影响土壤无脊椎动物群落的主要因子,对土壤无脊椎动物群落的解释率为69.30%。可见,林型转换可能通过改变土壤理化性质和凋落物质量,调控土壤无脊椎动物群落结构。  相似文献   

5.
Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross‐biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross‐validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies.  相似文献   

6.
Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high.  相似文献   

7.
Soil invertebrates and heavy metal concentrations are heterogeneously distributed in the soil of steppe plots surrounding an iron mining enterprise in southern Russia. This study assesses whether patches of high soil invertebrate abundance coincide with patches of low concentrations of pollutants. For this aim, spatial analysis by distance indices (SADIE) was applied. Three valleys in Belogorye Nature Reserve were chosen. One valley faced the tailing pond to the north and the other two faced south-east or south-west. Two sampling plots were chosen in each valley, 60 m apart from each other. On every plot 16 soil cores were collected from a grid of 4 × 4 units with a 5-m distance between each sample unit. Each soil core had an area of 76 cm2 and was 12–15 cm deep. All macroinvertebrates were hand-sorted and identified to family. Abundance of soil invertebrates was not controlled by patches of metal concentration in the soil. Epigaeic groups, like insects and other invertebrates inhabiting the litter layer, were not directly associated with local parameters of the soil. On the contrary, belowground invertebrate abundance (elaterid larvae and earthworms) showed significant dissociation with some heavy metal (Fe, Pb, Zn) concentrations in the soil. The patchiness of soil pollution may act as a leading factor of belowground soil invertebrate distribution. The spatial structure of animal populations in industrially transformed soils needs further research.  相似文献   

8.
Animal vectors are essential for the movement of invertebrate resting eggs between water bodies. However, differences in habitat preferences and feeding behaviour between bird species may result in variations in the dispersal of invertebrates via these birds, even if the different bird species live in the same lake. To test such effects, faecal samples from Anas platyrhynchos (collected in autumn and spring) and Tadorna tadorna (collected in spring) were cultured in water at 20° C and 12 L: 12 D conditions in order to quantify the resting eggs which could be internally transported by these birds. One half of each faecal sample was initially cultured at a conductivity of 0.6 mS cm−1 and the other half at 6 mS cm−1. 1054 invertebrates hatched from a total of 60 faecal samples, including cladocerans, copepods, ostracods, rotifers and ciliates, with a wide variability among faeces. Autumn yielded a low proportion of samples with hatchlings (12.5%) compared to spring (90%). Significant differences were observed between birds, but not between conductivity treatments. Thus, our results imply different hatching dynamics affected by disperser and season, but most species transported as resting eggs by birds seem to have a wide tolerance to hatch under variable salinity conditions. These differences may largery influence the metacommunity dynamics of lake networks, and could be a key factor to consider in wetland conservation planning.  相似文献   

9.
The fecal microbiota of 10 hospitalized elderly subjects and 14 healthy adults were analyzed by terminal-restriction fragment length polymorphism (T-RFLP) analysis using Hha I, Msp I, Hae III, and Alu I, as well as fecal polyamine (PA) concentration. The T-RFLP profiles of the fecal microbiota of the subjects were roughly divided into 2 clusters-I (9 out of 11 were derived from hospitalized elderly subjects) and II (12 out of 13 were derived from healthy adults). The average concentration of putrescine in Cluster II was 5.8 times higher than that of putrescine in Cluster I (P=0.0015). Using a phylogenetic assignment database for T-RFLP analysis of human colonic microbiota, the terminal-restriction fragments (T-RFs) characteristically detected in the case of subjects with high fecal PA concentration were predicted to be derived from bacterial species and phylotypes belonging to Clostridium subcluster XIVa, particularly including Clostridium xylanolyticum, Clostridium saccharolyticum, the uncultured human intestinal bacterium clone JW1H4 (a relative of Desulfotomaculum guttoideum), Roseburia intestinalis, the uncultured bacterium clone 41F10 (a relative of Eubacterium ramulus), Roseburia cecicola, Ruminococcus obeum and its relatives. From these results, we concluded that fecal microbiota may be linked with fecal PA concentration and that some bacterial species belonging to Clostridium subcluster XIVa may play a major role in the control of intestinal PA concentration in humans.  相似文献   

10.
蒋宇彤  张硕  林子佳  倪金凤 《微生物学报》2020,60(12):2635-2649
木质纤维素是地球上最丰富的有机聚合物,白蚁是古老但进化最成功的高效木质纤维素降解者之一。了解白蚁降解高度抗性植物聚合物的机制对工业上生物质能源转化和生物仿生设计有重要的借鉴和指导价值。白蚁和其共生微生物产生的木质纤维素酶在其转化利用木质纤维素上发挥着重要作用。本文从来源作用方面对白蚁自身及其肠道原虫、细菌和真菌产生的纤维素酶、木聚糖酶和漆酶等酶研究概况进行了总结,对其存在的问题和前景进行了展望。本综述有助于全面了解白蚁消化系统木质纤维素酶的基因种类、来源、分布、表达以及酶活性和功能。  相似文献   

11.
12.
低等白蚁肠道共生微生物的多样性及其功能   总被引:7,自引:0,他引:7  
低等白蚁肠道里存在着复杂的微生物区系,包括真核微生物鞭毛虫和原核生物,细菌及古细菌。低等白蚁的后肠以特别膨大的囊形胃及其氢氧浓度的明显梯度分布和丰富的微生物区系为特征,是白蚁进行木质纤维素消化的主要器官。后肠内的鞭毛虫能将纤维素水解并发酵为乙酸,二氧化碳和氢,为白蚁提供营养和能源。系统发育研究表明,低等白蚁肠道共生细菌的主要类群为白蚁菌群1、螺旋体、拟杆菌,低G C mol%含量的革兰氏阳性菌和紫细菌等。而古细菌主要为甲烷短杆菌属的产甲烷菌。共生原核生物与二氧化碳的还原和氮的循环等代谢有关。但肠道共生微生物的具体功能和作用机制还有待进一步的揭示。  相似文献   

13.
Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high.  相似文献   

14.
15.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

16.
High oxygen solubility at cold-water temperature is frequently considered to be responsible for an apparently elevated level of antioxidant protection in marine ectotherms from polar environments. However, tissue oxidative stress is in most cases a function of elevated or variable pO2, rather than of an elevated tissue oxygen concentration. This review summarizes current knowledge on pro- and antioxidant processes in marine invertebrates and fish, and relates reactive oxygen species (ROS) formation in polar ectotherms to homeoviscous adaptations of membrane and storage lipids, as well as to tissue hypoxia and re-oxygenation during physiological stress.  相似文献   

17.
Summary The cellulase gene celA of Clostridium thermocellum coding for the thermostable endoglucanase A was transferred from Escherichia coli to Bacillus subtilis 168 and B. stearothermophilus CU21 using plasmids derived from the Bacillus vector pUB110. When the structural part of the gene was joined to a pUB110 promoter the recombinant plasmids (pSE102, pSE105) were stably maintained and expressed carboxymethylcellulase (CMCase) activity. In B. stearothermophilus CU21 (pSE105) the clostridial CMCase was produced over a wide temperature range up to the maximal growth temperature (68° C). In contrast to E. coli, all of the CMCase synthesized in bacilli was released into the culture medium. About 50% of the extracellular protein secreted by B. subtilis 168 (pSE102) carrying the celA gene consisted of endoglucanase A. These findings demonstrate the feasibility of producing cellulolytic enzymes from thermophilic anaerobes in bacilli.  相似文献   

18.
19.
The activities of enzymes involved in the consecutive phosphorylation of thymidine were revealed in the gonad extracts of marine invertebrates. Along with thymidine kinase activity, thymidilate kinase activity was revealed in all the studied species; however, the specific activities of nucleoside and nucleotide kinases varied in different species of mollusks, sea stars and sea urchins. Thymidine and thymidilate kinases were isolated from the gonads of the scallop Mizuhopecten yessoensis and some of their enzymat properties were studied. The thymidine kinase of M. yessoensis catalyzed the phosphorylation of thymidine and deoxycytidine at a lesser rate, but didn’s use purine ribo-and deoxyribonucleosides or pyrimidine ribonucleosides as phosphate acceptors. The thymidilate kinase carried out both TMP and dCMP phosphorylation. As well as ATP, the enzymes of M. yessoensis were also able to use dATP, dGTP, GTP, UTP and CTP as donors of phosphate groups. The thymidine kinase activity was inhibited by TMP, TTP and dCTP.  相似文献   

20.
Abstract Cubitermes spp. are widely distributed soil-feeding termite species in sub-Saharan Africa which play a fundamental role in soil structure and fertility. A complex of at least four cryptic species (i.e., Cubitermes sp. affinis subarquatus complex of species) has been recently described using molecular markers. In order to investigate the breeding system of these species, five microsatellite markers were used to carry out parentage and relatedness analyses in 15 Gabonese colonies. Monogamy was confirmed as the predominant reproductive organization in Cubitermes spp. (76% of the colonies). Within 30% of these monogamous colonies, a high relatedness between reproductives was shown, suggesting that mating between related individuals occurs. However, Cubitermes colonies can deviate from monogamy. Indeed, parental contributions by at least two related reproductives of the same sex were revealed in four colonies and polyandry was demonstrated in two of them. Infiltration of reproductives in the colony is the most plausible explanation for such cases of polygamy in Cubitermes spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号