首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Cancer therapy using chemotherapeutic drugs frequently involves injection of the drug into the body through some intravenous mode of administration, viz, continuous (drip) infusion or single/multiple bolus injection(s). An understanding of the effect of the various modes of administration upon tumor penetration of drug is essential to rational design of drug therapy. This paper investigates drug penetration into a model tumor of slab geometry (between two capillaries) in which the overall transport rate of drug is limited by intra-tumor transport characterized by an effective diffusion coefficient. Employing the method of Finite Fourier Transforms (FFT), analytical solutions have been obtained for transient drug distribution in both the plasma and the tumor following three modes of administration, viz, continuous infusion, single bolus injection and equally-spaced equal-dose multiple bolus injections, of a given amount of drug. The qualitative trends exhibited by the plasma drug distribution profiles are consistent with reported experimental studies. Two concepts, viz, the dimensionless decay constant and the plasma/tumor drug concentration trajectories, are found to be particularly useful in the rational design of drug therapy. The dimensionless decay constant provides a measure of the rate of drug decay in the plasma relative to the rate of drug diffusion into the tumor and is thus characteristic of the tumor/drug system. The magnitude of this parameter dictates the choice of drug administration mode for minimizing drug decay in the plasma while simultaneously maximizing drug transport into the tumor. The concentration trajectories provide a measure of the plasma drug concentration relative to the tumor drug concentration at various times following injection. When the tumor drug concentration exceeds the plasma drug concentration, the drug will begin to diffuse out of the tumor. Knowledge of the time at which this diffusion reversal occurs is especially useful for optimum scheduling of subsequent bolus injections in a multiple bolus dosing regimen. There are no reported applications of the FFT method to solve repeated input functions in either the chemical engineering or pharmaceutical science literature. Thus, the application of FFT method to solve multiple bolus injections is a unique one. Use of this FFT based analysis as a predictor tool can limit the number of costly experiments which are being done now to achieve this purpose. Even though the model in its present form is simplified, the analysis thereof has nevertheless led to a better understanding of the various factors that must be taken into account for rational design of drug therapy.  相似文献   

2.
Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed.  相似文献   

3.
Effects of cellular pharmacology on drug distribution in tissues.   总被引:2,自引:0,他引:2       下载免费PDF全文
The efficacy of targeted therapeutics such as immunotoxins is directly related to both the extent of distribution achievable and the degree of drug internalization by individual cells in the tissue of interest. The factors that influence the tissue distribution of such drugs include drug transport; receptor/drug binding; and cellular pharmacology, the processing and routing of the drug within cells. To examine the importance of cellular pharmacology, previously treated only superficially, we have developed a mathematical model for drug transport in tissues that includes drug and receptor internalization, recycling, and degradation, as well as drug diffusion in the extracellular space and binding to cell surface receptors. We have applied this "cellular pharmacology model" to a model drug/cell system, specifically, transferrin and the well-defined transferrin cycle in CHO cells. We compare simulation results to models with extracellular diffusion only or diffusion with binding to cell surface receptors and present a parameter sensitivity analysis. The comparison of models illustrates that inclusion of intracellular trafficking significantly increases the total transferrin concentration throughout much of the tissue while decreasing the penetration depth. Increasing receptor affinity or tissue receptor density reduces permeation of extracellular drug while increasing the peak value of the intracellular drug concentration, resulting in "internal trapping" of transferrin near the source; this could account for heterogeneity of drug distributions observed in experimental systems. Other results indicate that the degree of drug internalization is not predicted by the total drug profile. Hence, when intracellular drug is required for a therapeutic effect, the optimal treatment may not result from conditions that produce the maximal total drug distribution. Examination of models that include cellular pharmacology may help guide rational drug design and provide useful information for whole body pharmacokinetic studies.  相似文献   

4.
A novel oral drug delivery system for the controlled release of liquid drugs, drug solutions, and semisolid drug preparations is presented that is utilizing the constant vapor pressure of liquefied gas. The system is equipped with a capillary as an element determining the drug delivery rate and contains a liquefied propellant with a suitable boiling point below human body temperature. In the dissolution studies, polyacrylate gels of different viscosities containing paracetamol as model drug were used. Zero-order release kinetics was obtained. The release rates were dependent on the gel viscosity. Besides, by gel viscosity, the drug release rates could also be modified by changing the propellant type and the capillary parameters such as length or diameter. Accordingly, the new system enables a wide range of drug delivery kinetics which can be modified in a case-by-case basis in order to match the desired drug delivery characteristics.  相似文献   

5.
Drug metabolism can be a key determinant of drug toxicity. A nontoxic parent drug may be biotransformed by drug metabolizing enzymes to toxic metabolites (metabolic activation). Conversely, a toxic drug may be biotransformed to nontoxic metabolites (detoxification). The approaches to evaluate metabolism-based drug toxicity include the identification of toxic metabolites and the evaluation of toxicity in metabolically competent and metabolically compromised systems. A clear understanding of the role of drug metabolism in toxicity can aid the identification of risk factors that may potentiate drug toxicity, and may provide key information for the development of safe drugs.  相似文献   

6.
Drug interactions are important causes of both unexpected toxic and therapeutic effects. Adverse reactions due to drug interaction are proportional to the number of drugs given and the duration of administration. Although drug interactions may be beneficial, they are most often recognized when they increase mortality or morbidity. The frequency of adverse drug interactions in clinical practice makes it mandatory for physicians to know the drugs and mechanisms involved.A drug may potentiate or antagonize the effects of another drug by direct chemical or physical combination, by altering gastrointestinal absorption, by influencing metabolism, transport, or renal clearance, by changing the activity of a drug at its receptor site, or by modifying the patient''s response to the drug by a variety of means.This article stresses the importance of avoiding multible drug therapy. When such treatment is unavoidable, patients must be carefully observed for evidence of intensified or diminished drug effect. Only this permits the detection and prevention of untoward drug interactions.  相似文献   

7.
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large‐scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross‐validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue‐specific expression information on the drug targets. We further show that disease‐specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease‐specific signatures.  相似文献   

8.
孕烷X 受体(PXR)是一类配体依赖性的核受体亚家族,可感受外源物质,被多种药物激活。PXR 可转录调控多种与药物代谢 相关的药物代谢酶和药物转运体的表达,参与药物代谢调控。PXR 转录活性的变化可改变药物在体内的代谢过程,继而诱发潜在药物不 良反应,与药物药代动力学研究和临床药物治疗密切相关,并有潜力成为防治药物介导的肝损伤和逆转化疗药物耐药的新型药物靶标。 综述了目前已发现的PXR 翻译后修饰及其对PXR 功能调控机制的研究进展。  相似文献   

9.
恶性肿瘤是影响人类生命健康的重大疾病之一,药物治疗是常见的治疗手段。近年来,“精准治疗”已经成为肿瘤治疗的趋势。要实现对恶性肿瘤有效、精准的药物治疗,药物筛选模型至关重要。肿瘤类器官是近年来新兴的一种三维细胞模型,具有经长期传代还保留亲本肿瘤的特征和异质性、培养成功率高、周期短和能够高通量筛选药物等优点,已被用于药物筛选、预测患者对治疗的反应以及为个性化用药提供指导等。重点介绍了肿瘤类器官在药物筛选及个性化用药中的研究进展和面临的挑战。  相似文献   

10.
In the previous paper (Peper et al., 1987: J. theor. Biol. 127, 413), a model of drug tolerance was developed based on the assumption that the decrease of drug effect after repeated administration of a drug is caused by the involved regulations in the organism adapting themselves to the presence of the drug. In the present paper, the behaviour of the model is studied with respect to the dose-response relation, the drug effect in dependent and non-dependent subjects and withdrawal symptoms. Computer simulations demonstrate the model to be highly sensitive to sudden changes of drug dose. Dependent on the open loop gain of the adaptive mechanism, a sudden decrease of drug dose might result in an effect opposite to the common drug effect. In the model, the rate of decrease of drug dose necessary for optimal drug withdrawal appears to be determined by the same mechanism as the rate of increase of dose necessary for a constant effect at the commencement of treatment. The behaviour of the model suggests the degree of drug dependence in an addicted subject to depend on the extent to which non-somatic factors are involved in the process of initiation of the adaptive mechanisms.  相似文献   

11.
BackgroundRapid dissemination of information regarding adverse drug reactions is a key aspect for improving pharmacovigilance. There is a possibility that unknown adverse drug reactions will become apparent through post-marketing administration. Currently, although there have been studies evaluating the relationships between a drug and adverse drug reactions using the JADER database which collects reported spontaneous adverse drug reactions, an efficient approach to assess the association between adverse drug reactions of drugs with the same indications as well as the influence of demographics (e.g. gender) has not been proposed.ConclusionsDifferent combinations of adverse drug reactions were noted between the antidepressants. In addition, the reported adverse drug reactions differed by gender. This approach using a large database for examining the associations can improve safety monitoring during the post-marketing phase.  相似文献   

12.
Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. The drug resistance has a genetic basis that is caused by an abnormal gene expression. There are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints ( and ). siRNA is used to silence the drug resistant phenotype and prevent this drug resistance response. Of the listed types of drug resistance, pump-type resistance (e.g., high expression of ATP-binding cassette transporter proteins such as P-glycoproteins (Pgp; also known as multi-drug resistance protein 1 or MDR1, encoded by the ATP-Binding Cassette Sub-Family B Member 1 (ABCB1) gene)) and apoptosis inhibition (e.g., expression of anti-apoptotic proteins such as Bcl-2) are the most frequently targeted for gene silencing. The co-delivery of siRNA and chemotherapeutic drugs has a synergistic effect, but many of the current projects do not control the drug release from the nanocarrier. This means that the drug payload is released before the drug resistance proteins have degraded and the drug resistance phenotype has been silenced. Current research focuses on cross-linking the carrier's polymers to prevent premature drug release, but these carriers still rely on environmental cues to release the drug payload, and the drug may be released too early. In this review, we studied the release kinetics of siRNA and chemotherapeutic drugs from a broad range of carriers. We also give examples of carriers used to co-deliver siRNA and drugs to drug-resistant tumor cells, and we examine how modifications to the carrier affect the delivery. Lastly, we give our recommendations for the future directions of the co-delivery of siRNA and chemotherapeutic drug treatments.  相似文献   

13.
Modeling the influence of a technology such as nanoparticle systems on drug delivery is beneficial in rational formulation design. While there are many studies showing drug delivery enhancement by nanoparticles, the literature provides little guidance regarding when nanoparticles are useful for delivery of a given drug. A model was developed predicting intracellular drug concentration in cultured cells dosed with nanoparticles. The model considered drug release from nanoparticles as well as drug and nanoparticle uptake by the cells as the key system processes. Mathematical expressions for these key processes were determined using experiments in which each process occurred in isolation. In these experiments, intracellular delivery of saquinavir, a low solubility drug dosed as a formulation of poly(ethylene oxide)-modified poly(epsilon- caprolactone) (PEO-PCL) nanoparticles, was studied in THP-1 human monocyte/macrophage (Mo/Mac) cells. The model accurately predicted the enhancement in intracellular concentration when drug was administered in nanoparticles compared to aqueous solution. This simple model highlights the importance of relative kinetics of nanoparticle uptake and drug release in determining overall enhancement of intracellular drug concentration when dosing with nanoparticles.  相似文献   

14.
Apparently anomalous behaviour arises if a radiolabelled drug and a non-radioactive drug compete for binding to a membrane-bound receptor when (a) there is severe depletion of the radiolabelled drug and (b) the non-radioactive drug binds to a heterogeneous population of binding sites. In extreme cases, binding of the non-radioactive drug to the sites of high affinity can be obscured completely. This phenomenon is illustrated by the binding of carbachol to muscarinic receptors, estimated by inhibition of a radiolabelled antagonist.  相似文献   

15.
本文阐述了现代道地中药材的概念演变,道地中药材是经过千百年来的疗效认证而普遍得到人们认可的优质中药材。通过对中药材栽培历史的分析,本文认为道地中药材的优质性主要来自野生资源。多数中药栽培发展较晚,栽培生产技术与环境结合尚未达到最优化的程度。从道地中药材成因的角度分析,野生中药材在生长年限、种质、生境、性状、成份等各方面与栽培中药材都与明显的差异,其质量也一定不同,因此对栽培中药材的道地性的应有待于进一步认识。同时,通过将现代栽培技术与中药材栽培相结合,会对栽培中药材的质量稳定和提高发挥重要作用。  相似文献   

16.
Despite the rapid growth of postgenomic data and fast-paced technology advancement, drug discovery is still a lengthy and difficult process. More effective drug design requires a better understanding of the interaction between drug candidates and their targets/off-targets in various situations. The ability of chemical proteomics to integrate a multiplicity of disciplines enables the direct analysis of protein activities on a proteome-wide scale, which has enormous potential to facilitate drug target elucidation and lead drug verification. Over recent years, chemical proteomics has experienced rapid growth and provided a valuable method for drug target identification and inhibitor discovery. This review introduces basic concepts and technologies of different popular chemical proteomic approaches. It also covers the essential features and recent advances of each approach while underscoring their potentials in drug discovery and development.  相似文献   

17.
We previously developed a unique four-fluid nozzle spray drier that can produce water-soluble microspheres containing water-insoluble drug nanoparticles in one step without any common solvent between the water-insoluble drug and water-soluble carrier. In the present study, we focused on maltosyl-β-cyclodextrin (malt-β-CD) as a new water-soluble carrier and it was investigated whether drug/malt-β-CD microspheres could improve the bioavailability compared with our previously reported drug/mannitol (MAN) microspheres. The physicochemical properties of bare drug microparticles (ONO-2921, a model water-insoluble drug), drug/MAN microspheres, and drug/malt-β-CD microspheres were evaluated. In vitro aerosol performance, in vitro dissolution rate, and the blood concentration profiles after intratracheal administration were compared between these formulations. The mean diameter of both drug/MAN and drug/malt-β-CD microspheres was approximately 3–5 μm and both exhibited high aerosol performance (>20% in stages 2–7), but drug/malt-β-CD microspheres had superior release properties. Drug/malt-β-CD microspheres dissolved in an aqueous phase within 2 min, while drug/MAN microspheres failed to dissolve in 30 min. Inhalation of drug/malt-β-CD microspheres enhanced the area under the curve of the blood concentration curve by 15.9-fold than that of bare drug microparticles and by 6.1-fold than that of drug/MAN microspheres. Absolute bioavailability (pulmonary/intravenous route) of drug/malt-β-CD microspheres was also much higher (42%) than that of drug/MAN microspheres (6.9%). These results indicate that drug/malt-β-CD microspheres prepared by our four-fluid nozzle spray drier can improve drug solubility and pulmonary delivery.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9826-z) contains supplementary material, which is available to authorized users.KEY WORDS: 4-fluid nozzle spray drier, inhalation therapy, maltosyl-β-cyclodextrin, microparticles, water-insoluble drug  相似文献   

18.
Sparsomycin interaction with the ribosome and characteristics of the drug binding site in the particle were studied using chemical modification of the drug, affinity labeling methods and isolation of drug resistant mutants. The structure-function relationship studies, performed with a large number of drug derivatives, indicate that the drug interacts with the ribosome by its western and eastern moieties. The uracil ring, in the western end of the drug molecule, probably forms hydrogen bonds with the rRNA, while the apolar CH3-S-CH3 group in the eastern end interacts with a hydrophobic ribosomal domain that affinity labeling results seem to indicate is formed by protein. An increase in lipophilicity in this part of the antibiotic results in a dramatic increase in the inhibitory activity of the drug. The sparsomycin binding site is not accessible in free ribosomes, but the presence of an N-blocked amino acyl-tRNA at the P-site turns the particles capable of reversible interaction with the drug. After failure using Escherichia coli, a sparsomycin-resistant mutant was obtained by direct mutagenesis on Halobacterium halobium, a species with a unique copy of rRNA genes, stressing the role of rRNA on the drug interaction site.  相似文献   

19.
In-stent restenosis occurs in coronary arteries after implantation of drug-eluting stents with non-uniform restenosis thickness distribution in the artery cross section. Knowledge of the spatio-temporal drug uptake in the arterial wall is useful for investigating restenosis growth but may often be very expensive/difficult to acquire experimentally. In this study, local delivery of a hydrophobic drug from a drug-eluting stent implanted in a coronary artery is mathematically modelled to investigate the drug release and spatio-temporal drug distribution in the arterial wall. The model integrates drug diffusion in the coating and drug diffusion with reversible binding in the arterial wall. The model is solved by the finite volume method for both high and low drug loadings relative to its solubility in the stent coating with varied isotropic–anisotropic vascular drug diffusivities. Drug release profiles in the coating are observed to depend not only on the coating drug diffusivity but also on the properties of the surrounding arterial wall. Time dependencies of the spatially averaged free- and bound-drug levels in the arterial wall on the coating and vascular drug diffusivities are discussed. Anisotropic vascular drug diffusivities result in slightly different average drug levels in the arterial wall but with very different spatial distributions. Higher circumferential vascular diffusivity results in more uniform drug loading in the upper layers and is potentially beneficial in reducing in-stent restenosis. An analytical expression is derived which can be used to determine regions in the arterial with higher free-drug concentration than bound-drug concentration.  相似文献   

20.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection-diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号