首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2′-F substituted RNA aptamers that bind to the HIV-1BaL gp120 protein with nanomole affinity were isolated from a RNA library by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure. From two of these aptamers we created a series of new dual inhibitory function anti-gp120 aptamer–siRNA chimeras. The aptamers and aptamer–siRNA chimeras specifically bind to and are internalized into cells expressing HIV gp160. The Dicer-substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells (PBMCs). Moreover, we have introduced a ‘sticky’ sequence onto a chemically synthesized aptamer which facilitates attachment of the Dicer substrate siRNAs for potential multiplexing. Our results provide a set of novel inhibitory agents for blocking HIV replication and further validate the use of aptamers for delivery of Dicer substrate siRNAs.  相似文献   

2.
A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells.  相似文献   

3.
Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts.  相似文献   

4.

Background

Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged.

Methodology/Principal Findings

Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence.

Conclusions/Significance

Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application.  相似文献   

5.
Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau) was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III) derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac)-His-Asp-Trp-Lys(Dau = Aoa)-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl). This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa)-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.  相似文献   

6.
Apoptosis signal-regulating kinase (ASK) 1 is activated in response to various cytotoxic stresses including TNF, Fas and reactive oxygen species (ROS) such as H2O2, and activates c-Jun NH2-terminal kinase (JNK) and p38. However, the roles of JNK and p38 signaling pathways during apoptosis have been controversial. Here we show that by deleting ASK1 in mice, TNF- and H2O2-induced sustained activations of JNK and p38 are lost in ASK1–/– embryonic fibroblasts, and that ASK1–/– cells are resistant to TNF- and H2O2-induced apoptosis. TNF- but not Fas-induced apoptosis requires ROS-dependent activation of ASK1–JNK/p38 pathways. Thus, ASK1 is selectively required for TNF- and oxidative stress-induced sustained activations of JNK/p38 and apoptosis.  相似文献   

7.

Background

Fibrotic remodeling of airway and lung parenchymal compartments is attributed to pulmonary dysfunction with an involvement of reactive oxygen species (ROS) in chronic lung diseases such as idiopathic pulmonary fibrosis and asthma.

Methods

The in vitro study elucidated inhibitory effects of astragalin, kaempferol-3-O-glucoside from leaves of persimmon and green tea seeds, on oxidative stress-induced airway fibrosis. The in vivo study explored the demoting effects of astragalin on epithelial to mesenchymal transition in BALB/c mice sensitized with ovalbumin (OVA).

Results

The exposure of 20 μM H2O2 for 72 h accelerated E-cadherin loss and vimentin induction in airway epithelial BEAS-2B cells, which was reversed by non-toxic astragalin at 1–20 μM. Astragalin allayed the airway tissue levels of ROS and vimentin enhanced by OVA challenge. Collagen type 1 production increased in H2O2–exposed epithelial cells and collagen fiber deposition was observed in OVA-challenged mouse airways. This study further investigated that the oxidative stress-triggered autophagic regulation was responsible for inducing airway fibrosis. H2O2 highly enhanced the expression induction of the autophagy-related beclin-1 and light chains 3A/B (LC3A/B) within 4 h and astragalin blocked such induction by H2O2. This compound deterred the ROS-promoted autophagosome formation in BEAS-2B cells. Consistently, in OVA-sensitized mice the expression of beclin-1 and LC3A/B was highly induced, and oral administration of astragalin suppressed the autophagosome formation with inhibiting the induction of these proteins in OVA-challenged airway subepithelium. Induction of autophagy by spermidine influenced the epithelial induction of E-cadherin and vimentin that was blocked by treating astragalin.

Conclusion

These results demonstrate that astragalin can be effective in allaying ROS-promoted bronchial fibrosis through inhibiting autophagosome formation in airways.  相似文献   

8.
Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.  相似文献   

9.
Degradation of heparan sulfate (HS) in the extracellular matrix by heparanase is linked to the processes of tumor invasion and metastasis. Thus, a heparanase inhibitor can be a potential anticancer drug. Because HS with unsubstituted glucosamine residues accumulates in heparanase-expressing breast cancer cells, we assumed that these HS structures are resistant to heparanase and can therefore be utilized as a heparanase inhibitor. As expected, chemically synthetic HS-tetrasaccharides containing unsubstituted glucosamine residues, GlcAβ1–4GlcNH3+(6-O-sulfate)α1–4GlcAβ1–4GlcNH3+(6-O-sulfate), inhibited heparanase activity and suppressed invasion of breast cancer cells in vitro. Bifunctional NDST-1 (N-deacetylase/N-sulfotransferase-1) catalyzes the modification of N-acetylglucosamine residues within HS chains, and the balance of N-deacetylase and N-sulfotransferase activities of NDST-1 is thought to be a determinant of the generation of unsubstituted glucosamine. We also report here that EXTL3 (exostosin-like 3) controls N-sulfotransferase activity of NDST-1 by forming a complex with NDST-1 and contributes to generation of unsubstituted glucosamine residues.  相似文献   

10.
Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.  相似文献   

11.
12.
Gleditsia triacanthos L. is a deciduous tree belonging to the family Fabaceae. It possesses important biological activities as anti-mutagenic, anticancer, cytotoxic and treating rheumatoid arthritis. The total ethanol extract (EtOHE) and successive extracts (petroleum ether, chloroform, ethyl acetate, and aqueous ethanol) were prepared from the leaves. Eight flavone glycosides and two flavone aglycones named vicenin-I (1), vitexin (2), isovitexin (3), orientin (4), isoorientin (5), luteolin-7-O-ß-glucopyranoside (6), luteolin-7-O-ß-galactopyranoside (7), apigenin-7-O-ß-glucopyranoside (8), luteolin (9) and apigenin (10) were isolated from the aqueous ethanol extract of G. triacanthos L. leaves. Potent cytotoxic activity of the EtOHE extract was observed against the liver (IC50 = 1.68 μg), breast (IC50 = 0.74 μg), cervix (IC50 = 1.28 μg), larynx (IC50 = 0.67 μg) and colon (IC50 = 2.50 μg) cancer cell lines. Cytotoxic activity of compounds 2, 4, 6 and 8 against, the liver, breast and colon cancer cell lines was also proved. Evaluation of the in-vivo antioxidant activity of the EtOHE and successive extracts revealed that the highest activity was exhibited by 100 mg of EtOHE (97.89% potency) as compared with vitamin E (100% potency). Compound 6 showed 91.8% free radical scavenging activity.  相似文献   

13.
Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O 6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O 6-benzylguanine (O 6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment.  相似文献   

14.
Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.  相似文献   

15.
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets (“apatopes”) with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer–aptamer, aptamer–nonaptamer biomacromolecules (siRNAs, proteins) and aptamer–nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.  相似文献   

16.
The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracile formed an ~500-μm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at ~10 μM O2. Flux calculations yielded a molar conversion ratio Stot/O2 of 2.03:1 (Stot = [H2S] + [HS] + [S2−]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracile spread into the anoxic zone while still avoiding regions with >10 μM O2. The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 μM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.  相似文献   

17.
Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.  相似文献   

18.
A closed system consisting of an assimilation chamber furnished with a membrane inlet from the liquid phase connected to a mass spectrometer was used to measure O2 evolution and uptake by Chlamydomonas reinhardtii cells grown in ambient (0.034% CO2) or CO2-enriched (5% CO2) air. At pH = 6.9, 28°C and concentrations of dissolved inorganic carbon (DIC) saturating for photosynthesis, O2 uptake in the light (Uo) equaled O2 production (Eo) at the light compensation point (15 micromoles photons per square meter per second). Eo and Uo increased with increasing photon fluence rate (PFR) but were not rate saturated at 600 micromoles photons per square meter per second, while net O2 exchange reached a saturation level near 500 micromoles photons per square meter per second which was nearly the same for both, CO2-grown and air-grown cells. Comparison of the Uo/Eo ratios between air-grown and CO2-grown C. reinhardtii showed higher values for air-grown cells at light intensities higher than light compensation. For both, air-grown and CO2-grown algae the rates of mitochondrial O2 uptake in the dark measured immediately before and 5 minutes after illumination were much lower than Uo at PFR saturating for net photosynthesis. We conclude that noncyclic electron flow from water to NADP+ and pseudocyclic electron flow via photosystem I to O2 both significantly contribute to O2 exchange in the light. In contrast, mitochondrial respiration and photosynthetic carbon oxidation cycle are regarded as minor O2 consuming reactions in the light in both, air-grown and CO2-grown cells. It is suggested that the “extra” O2 uptake by air-grown algae provides ATP required for the energy dependent CO2/HCO3 concentrating mechanism known to be present in these cells.  相似文献   

19.
We have recently proposed a new model of cancer metabolism to explain the role of aerobic glycolysis and L-lactate production in fueling tumor growth and metastasis. In this model, cancer cells secrete hydrogen peroxide (H2O2), initiating oxidative stress and aerobic glycolysis in the tumor stroma. This, in turn, drives L-lactate secretion from cancer-associated fibroblasts. Secreted L-lactate then fuels oxidative mitochondrial metabolism (OXPHOS) in epithelial cancer cells, by acting as a paracrine onco-metabolite. We have previously termed this type of two-compartment tumor metabolism the “reverse Warburg effect,” as aerobic glycolysis takes place in stromal fibroblasts, rather than epithelial cancer cells. Here, we used MCT4 immunostaining of human breast cancer tissue microarrays (TMAs; >180 triple-negative patients) to directly assess the prognostic value of the “reverse Warburg effect.” MCT4 expression is a functional marker of hypoxia, oxidative stress, aerobic glycolysis and L-lactate efflux. Remarkably, high stromal MCT4 levels (score = 2) were specifically associated with decreased overall survival (<18% survival at 10 years post-diagnosis). In contrast, patients with absent stromal MCT4 expression (score = 0), had 10-year survival rates of ∼97% (p-value < 10−32). High stromal levels of MCT4 were strictly correlated with a loss of stromal Cav-1 (p-value < 10−14), a known marker of early tumor recurrence and metastasis. In fact, the combined use of stromal Cav-1 and stromal MCT4 allowed us to more precisely identify high-risk triple-negative breast cancer patients, consistent with the goal of individualized risk-assessment and personalized cancer treatment. However, epithelial MCT4 staining had no prognostic value, indicating that the “conventional” Warburg effect does not predict clinical outcome. Thus, the “reverse Warburg effect” or “parasitic” energy-transfer is a key determinant of poor overall patient survival. As MCT4 is a druggable target, MCT4 inhibitors should be developed for the treatment of aggressive breast cancers, and possibly other types of human cancers. Similarly, we discuss how stromal MCT4 could be used as a biomarker for identifying high-risk cancer patients that could likely benefit from treatment with FDA-approved drugs or existing MCT-inhibitors (such as, AR-C155858, AR-C117977 and AZD-3965).Key words: caveolin-1, oxidative stress, pseudohypoxia, lactate shuttle, MCT4, metabolic coupling, tumor stroma, predictive biomarker, SLC16A3, monocarboxylic acid transporter, two-compartment tumor metabolism  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号