首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligomerization of the murine fatty acid transport protein 1   总被引:3,自引:0,他引:3  
The 63-kDa murine fatty acid transport protein 1 (FATP1) was cloned on the basis of its ability to augment fatty acid import when overexpressed in mammalian cells. The membrane topology of this integral plasma membrane protein does not resemble that of polytopic membrane transporters for other substrates. Western blot analysis of 3T3-L1 adipocytes that natively express FATP1 demonstrate a prominent 130-kDa species as well as the expected 63-kDa FATP1, suggesting that this protein may participate in a cell surface transport protein complex. To test whether FATP1 is capable of oligomerization, we expressed functional FATP1 molecules with different amino- or carboxyl-terminal epitope tags in fibroblasts. These epitope-tagged proteins also form apparent higher molecular weight species. We show that, when expressed in the same cells, differentially tagged FATP1 proteins co-immunoprecipitate. The region between amino acid residues 191 and 475 is sufficient for association of differentially tagged truncated FATP1 constructs. When wild type FATP1 and the non-functional s250a FATP1 mutant are co-expressed in COS7 cells, mutant FATP1 has dominant inhibitory function in fatty acid uptake assays. Taken together, these results are consistent with a model in which FATP1 homodimeric complexes play an important role in cellular fatty acid import.  相似文献   

2.
Fatty acid transport protein 1 (FATP1) is an approximately 63-kDa plasma membrane protein that facilitates the influx of fatty acids into adipocytes as well as skeletal and cardiac myocytes. Previous studies with FATP1 expressed in COS1 cell extracts suggested that FATP1 exhibits very long chain acyl-CoA synthetase (ACS) activity and that such activity may be linked to fatty acid transport. To address the enzymatic activity of the isolated protein, murine FATP1 and ACS1 were engineered to contain a C-terminal Myc-His tag expressed in COS1 cells via adenoviral-mediated infection and purified to homogeneity using nickel affinity chromatography. Kinetic analysis of the purified enzymes was carried out for long chain palmitic acid (C16:0) and very long chain lignoceric acid (C24:0) as well as for ATP and CoA. FATP1 exhibited similar substrate specificity for fatty acids 16-24 carbons in length, whereas ACS1 was 10-fold more active on long chain fatty acids relative to very long chain fatty acids. The very long chain acyl-CoA synthetase activity of the two enzymes was comparable as were the Km values for both ATP and coenzyme A. Interestingly, FATP1 was insensitive to inhibition by triacsin C, whereas ACS1 was inhibited by micromolar concentrations of the compound. These data represent the first characterization of purified FATP1 and indicate that the enzyme is a broad substrate specificity acyl-CoA synthetase. These findings are consistent with the hypothesis that that fatty acid uptake into cells is linked to their esterification with coenzyme A.  相似文献   

3.
The Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene encodes an integral membrane protein, called seipin, of unknown function localized to the endoplasmic reticulum of eukaryotic cells. Seipin is associated with the heterogeneous genetic disease BSCL2, and mutations in an N-glycosylation motif links the protein to two other disorders, autosomal-dominant distal hereditary motor neuropathy type V and Silver syndrome. Here, we report a topological study of seipin using an in vitro topology mapping assay. Our results suggest that the predominant form of seipin is 462 residues long and has an N(cyt)-C(cyt) orientation with a long luminal loop between the two transmembrane helices.  相似文献   

4.
Characterization of a heart-specific fatty acid transport protein   总被引:9,自引:0,他引:9  
Fatty acids are a major source of energy for cardiac myocytes. Changes in fatty acid metabolism have been implicated as causal in diabetes and cardiac disease. The mechanism by which long chain fatty acids (LCFAs) enter cardiac myocytes is not well understood but appears to occur predominantly by protein-mediated transport. Here we report the cloning, expression pattern, and subcellular localization of a novel member of the fatty acid transport protein (FATP) family termed FATP6. FATP6 is principally expressed in the heart where it is the predominant FATP family member. Similar to other FATPs, transient and stable transfection of FATP6 into 293 cells enhanced uptake of LCFAs. FATP6 mRNA was localized to cardiac myocytes by in situ hybridization. Immunofluorescence microscopy of FATP6 in monkey and murine hearts revealed that the protein is exclusively located on the sarcolemma. FATP6 was restricted in its distribution to areas of the plasma membrane juxtaposed with small blood vessels. In these membrane domains FATP6 also colocalizes with another molecule involved in LCFA uptake, CD36. These findings suggest that FATP6 is involved in heart LCFA uptake, in which it may play a role in the pathogenesis of lipid-related cardiac disorders.  相似文献   

5.
YddG is an inner membrane protein (IMP) that exports aromatic amino acids in Escherichia coli. Topology models of YddG produced by sequence-based analysis in silico have predicted the presence of 9 or 10 potential transmembrane segments. To experimentally analyze the membrane topology of YddG, we used randomly created fusions to β-lactamase (BlaM) as a reporter. The selection of such fusions under 50 μg/ml of ampicillin had to fit with the periplasmic location of the BlaM domain. Five periplasmic loops of YddG predicted by the 10-transmembrane (TM) helices model were identified via the characterization of 12 unique in-frame fusions distributed along the yddG coding region. To confirm the 10-TM helices model further, cytoplasmic regions of YddG were identified with the help of ZsGreen fluorescent protein as a reporter. The presence of four cytoplasmic regions and the cytoplasmic localization of the C-terminus were revealed. Therefore, a 10-TM helices topology with cytoplasmic locations of the N- and C-termini is supported. The present data confirm the 'positive-inside rule' for IMPs and the early results of other workers regarding the cytoplasmic location of the C-terminus of YddG. The pole-specific localization of YddG-ZsGreen in E. coli cells was detected by fluorescence microscopy.  相似文献   

6.
The murine fatty acid transport protein (FATP) facilitates uptake of long chain fatty acids (LCFAs) when expressed in mammalian cells. FATP's sequence contains a highly conserved motif, IYTSGTTGXPK, also found in a number of proteins known to interact with ATP. To explore the role of this motif, we independently mutated the central serine (serine 250) and threonine (threonine 252) residues in this motif and assessed the effects of these mutations on FATP function. When expressed in fibroblasts, the FATP mutants demonstrated impaired LCFA import and impaired binding of [alpha-32P]8-azido-ATP (azido-ATP) compared with wild-type FATP. These results suggest that serine 250 and threonine 252 are critical for FATP function and that the mechanism of action of FATP involves nucleotide binding which is dependent on these residues.  相似文献   

7.
Identification of the major intestinal fatty acid transport protein.   总被引:7,自引:0,他引:7  
While intestinal transport systems for metabolites such as carbohydrates have been well characterized, the molecular mechanisms of fatty acid (FA) transport across the apical plasmalemma of enterocytes have remained largely unclear. Here, we show that FATP4, a member of a large family of FA transport proteins (FATPs), is expressed at high levels on the apical side of mature enterocytes in the small intestine. Further, overexpression of FATP4 in 293 cells facilitates uptake of long chain FAs with the same specificity as enterocytes, while reduction of FATP4 expression in primary enterocytes by antisense oligonucleotides inhibits FA uptake by 50%. This suggests that FATP4 is the principal fatty acid transporter in enterocytes and may constitute a novel target for antiobesity therapy.  相似文献   

8.
Membrane topology of the mammalian CMP-sialic acid transporter   总被引:7,自引:0,他引:7  
Nucleotide sugar transporters form a family of distantly related membrane proteins of the Golgi apparatus and the endoplasmic reticulum. The first transporter sequences have been identified within the last 2 years. However, information about the secondary and tertiary structure for these molecules has been limited to theoretical considerations. In the present study, an epitope-insertion approach was used to investigate the membrane topology of the CMP-sialic acid transporter. Immunofluorescence studies were carried out to analyze the orientation of the introduced epitopes in semipermeabilized cells. Both an amino-terminally introduced FLAG sequence and a carboxyl-terminal hemagglutinin tag were found to be oriented toward the cytosol. Results obtained with CMP-sialic acid transporter variants that contained the hemagglutinin epitope in potential intermembrane loop structures were in good correlation with the presence of 10 transmembrane regions. This building concept seems to be preserved also in other mammalian and nonmammalian nucleotide sugar transporters. Moreover, the functional analysis of the generated mutants demonstrated that insertions in or very close to membrane-spanning regions inactivate the transport process, whereas those in hydrophilic loop structures have no detectable effect on the activity. This study points the way toward understanding structure-function relationships of nucleotide sugar transporters.  相似文献   

9.
The glycosylation state of the glycosyl-phosphatidylinositol (GPI) anchored cellular prion protein (PrPC) can influence the formation of the disease form of the protein responsible for the neurodegenerative spongiform encephalopathies. We have investigated the role of membrane topology in the N-glycosylation of PrP by expressing a C-terminal transmembrane anchored form, PrP-CTM, an N-terminal transmembrane anchored form, PrP-NTM, a double-anchored form, PrP-DA, and a truncated form, PrPDeltaGPI, in human neuroblastoma SH-SY5Y cells. Wild-type PrP, PrP- CTM and PrP-DA were membrane anchored and present on the cell surface as glycosylated forms. In contrast, PrP-NTM, although membrane anchored and localized at the cell surface, was not N-glycosylated. PrPDeltaGPI was secreted from the cells into the medium in a hydrophilic form that was unglycosylated. The 4-fold slower rate at which PrPDeltaGPI was trafficked through the cell compared with wild-type PrP was due to the absence of the GPI anchor not the lack of N-glycans. Retention of PrPDeltaGPI in the endoplasmic reticulum did not lead to its glycosylation. These results indicate that C-terminal membrane anchorage is required for N-glycosylation of PrP.  相似文献   

10.
The discovery, optimization and structure-activity relationship of novel FATP1 inhibitors have been described. The detailed SAR studies of each moiety of the inhibitors combined with metabolite analysis led to the identification of the potent inhibitors 11p and 11q with improved blood stability.  相似文献   

11.
Glycerol-3-phosphate acyltransferase (GPAT) is a rate-limiting enzyme in mammalian triacylglycerol biosynthesis. GPAT is a target for the treatment of metabolic disorders associated with high lipid accumulation. Although the molecular basis for GPAT1 activation has been investigated extensively, the activation of other isoforms, such as GPAT2, is less well understood. Here the membrane topology of the GPAT2 protein was examined using an epitope-tag-based method. Exogenously expressed GPAT2 protein was present in the membrane fraction of transformed HEK293 cells even in the presence of Na(2)CO(3) (100 mM), indicating that GPAT2 is a membrane-bound protein. Trypsin treatment of the membrane fraction degraded the N-terminal (FLAG) and C-terminal (myc-epitope) protein tags of the GPAT2 protein. Bioinformatic analysis of the GPAT2 protein sequence indicated four hydrophobic sequences as potential membrane-spanning regions (TM1-TM4). Immunoblotting of the myc-epitope tag, which was inserted between each TM region of the GPAT2 protein, showed that the amino acid sequence between TM3 and TM4 was protected from trypsin digestion. These results suggest that the GPAT2 protein has two transmembrane segments and that the N-terminal and C-terminal regions of this protein face the cytoplasm. These results also suggest that the enzymatically active motifs I-III of the GPAT2 protein face the cytosol, while motif IV is within the membrane. It is expected that the use of this topological model of GPAT2 will be essential in efforts to elucidate the molecular mechanisms of GPAT2 activity in mammalian cells.  相似文献   

12.
Fatty acid uptake into 3T3 L1 adipocytes is predominantly transporter mediated. Here we show that, during 3T3 L1 adipocyte differentiation, expression of fatty acid transport proteins (FATPs) 1 and 4 is induced. Using subcellular membrane fractionation and immunofluorescence microscopy, we demonstrate that, in adipocytes, insulin induces plasma membrane translocation of FATPs from an intracellular perinuclear compartment to the plasma membrane. This translocation was observed within minutes of insulin treatment and was paralleled by an increase in long chain fatty acid (LCFA) uptake. In contrast, treatment with TNF-alpha inhibited basal and insulin-induced LCFA uptake and reduced FATP1 and -4 levels. Thus, hormonal regulation of FATP activity may play an important role in energy homeostasis and metabolic disorders such as type 2 diabetes.  相似文献   

13.
Yeast Phs1 is the 3-hydroxyacyl-CoA dehydratase that catalyzes the third reaction of the four-step cycle in the elongation of very long-chain fatty acids (VLCFAs). In yeast, the hydrophobic backbone of sphingolipids, ceramide, consists of a long-chain base and an amide-linked C26 VLCFA. Therefore, defects in VLCFA synthesis would be expected to greatly affect sphingolipid synthesis. In fact, in this study we found that reduced Phs1 levels result in significant impairment of the conversion of ceramide to inositol phosphorylceramide. Phs1 proteins are conserved among eukaryotes, constituting a novel protein family. Phs1 family members exhibit no sequence similarity to other dehydratase families, so their active site sequence and catalytic mechanism have been completely unknown. Here, by mutating 22 residues conserved among Phs1 family members, we identified six amino acid residues important in Phs1 function, two of which (Tyr-149 and Glu-156) are indispensable. We also examined the membrane topology of Phs1 using an N-glycosylation reporter assay. Our results suggest that Phs1 is a membrane-spanning protein that traverses the membrane six times and has an N terminus and C terminus facing the cytosol. The important amino acids are concentrated in or near two of the six proposed transmembrane regions. Thus, we also propose a catalytic mechanism for Phs1 that is not unlike mechanisms used by other hydratases active in lipid synthesis.  相似文献   

14.
The topology of FtsW from Streptococcus pneumoniae, an essential membrane protein involved in bacterial cell division, was predicted by computational methods and probed by the alkaline phosphatase fusion and cysteine accessibility techniques. Consistent results were obtained for the seven N-terminal membrane-spanning segments. However, the results from alkaline phosphatase fusions did not confirm the hydropathy analysis of the C-terminal part of FtsW, whereas the accessibility of introduced cysteine residues was in agreement with the theoretical prediction. Based on the combined results, we propose the first topological model of FtsW, featuring 10 membrane-spanning segments, a large extracytoplasmic loop, and both N and C termini located in the cytoplasm.  相似文献   

15.
Membrane topology of the Escherichia coli ExbD protein.   总被引:9,自引:3,他引:6       下载免费PDF全文
The ExbD protein is involved in the energy-coupled transport of ferric siderophores, vitamin B12, and B-group colicins across the outer membrane of Escherichia coli. In order to study ExbD membrane topology, ExbD-beta-lactamase fusion proteins were constructed. Cells expressing beta-lactamase fusions to residues 53, 57, 70, 76, 78, 80, 92, 121, and 134 of ExbD displayed high levels of ampicillin resistance, whereas fusions to residues 9 and 19 conferred no ampicillin resistance. It is concluded that the only hydrophobic segment of ExbD, encompassing residues 23 to 43, forms a transmembrane domain and that residues 1 to 22 are located in the cytoplasm and residues 44 to 141 are located in the periplasm.  相似文献   

16.
In Escherichia coli, the binding protein-dependent transport system for maltose and maltodextrins is composed of five proteins — LamB, MaIE, MaIF, MaIG and MaIK — located in the three layers of the bacterial envelope. Proteins MaIF and MaIG are hydrophobic inner membrane components mediating the energy-dependent translocation of substrates into the cytoplasm. In this paper, we analyse the topology of the MaIG protein by using methods based on the properties of fusions between maIG and‘phoA, a truncated gene encoding alkaline phosphatase lacking its translation initiation and exportation signals. Fusions were obtained by using either phage λTnphoA or by constructing in vitro fusions located randomly within the maIG gene. The deduced topological model suggests that MaIG spans the membrane six times and has its amino- and carboxy-termini in the cytoplasm. These results will be helpful for the interpretation of the phenotypes of mutants in maIG.  相似文献   

17.
The family of proteins that includes very long-chain acyl-CoA synthetases (ACSVL) consists of six members. These enzymes have also been designated fatty acid transport proteins. We cloned full-length mouse Acsvl3 cDNA and characterized its protein product ACSVL3/fatty acid transport protein 3. The predicted amino acid sequence contains two highly conserved motifs characteristic of acyl-CoA synthetases. Northern blot analysis revealed that the mouse Acsvl3 mRNA is highly expressed in adrenal gland, testis, and ovary, with lower expression in the brain of adult mice. A developmental Northern blot revealed that Acsvl3 mRNA levels were significantly higher in embryonic mouse brain (embryonic days 12-14) than in newborn or adult mice, suggesting a possible role in nervous system development. Immunohistochemistry revealed high ACSVL3 expression in adrenal cortical cells, spermatocytes and interstitial cells of the testis, theca cells of the ovary, cerebral cortical neurons, and cerebellar Purkinje cells. Endogenous ACSVL3 was found primarily in mitochondria of MA-10 and Neuro2a cells by both Western blot analysis of subcellular fractions and immunofluorescence analysis. In MA-10 cells, loss-of-function studies using RNA interference confirmed that endogenous ACSVL3 is an acyl-CoA synthetase capable of activating both long-chain (C16:0) and very long-chain (C24:0) fatty acids. However, despite decreased acyl-CoA synthetase activity, initial rates of fatty acid uptake were unaffected by knockdown of Acsvl3 expression in MA-10 cells. These studies cast doubt on the designation of ACSVL3 as a fatty acid transport protein.  相似文献   

18.
Triacylglycerols are the predominant molecules of energy storage in eukaryotes. However, excessive accumulation of triacylglycerols in adipose tissue leads to obesity and, in nonadipose tissues, is associated with tissue dysfunction. Hence, it is of great importance to have a better understanding of the molecular mechanisms of triacylglycerol synthesis. The final step in triacylglycerol synthesis is catalyzed by the acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Although recent studies have shed light on metabolic functions of these enzymes, little is known about the molecular aspects of their structures or functions. Here we report the topology for murine DGAT2 and the identification of key amino acids that likely contribute to enzymatic function. Our data indicate that DGAT2 is an integral membrane protein with both the N and C termini oriented toward the cytosol. A long hydrophobic region spanning amino acids 66-115 likely comprises two transmembrane domains or, alternatively, a single domain that is embedded in the membrane bilayer. The bulk of the protein lies distal to the transmembrane domains. This region shares the highest degree of homology with other enzymes of the DGAT2 family and contains a sequence HPHG that is conserved in all family members. Mutagenesis of this sequence in DGAT2 demonstrated that it is required for full enzymatic function. Additionally, a neutral lipid-binding domain that is located in the putative first transmembrane domain was also required for full enzymatic function. Our findings provide the first insights into the topography and molecular aspects of DGAT2 and related enzymes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号