首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bergersen  F. J. 《Annals of botany》1993,72(6):577-582
The diffusion of oxyleghaemoglobin, prepared from soybean rootnodules, was measured at 24°C in agar and agarose gels ofvarious strengths, or in 1% agarose containing 0-18% (w/v) bovineserum albumin, to simulate the protein content of the cytoplasmof root nodule cells. Values of Dp, the diffusion coefficient,were unaffected (Dp = 11·8 x 10-11 m2 s-1; s.e.m. 0·3x 10-11) until the protein concentration exceeded 6%, abovewhich Dp declined sharply. With 18% bovine serum albumin, theconcentration of total soluble protein calculated to be presentin the cytoplasm of infected cells, where most of the leghaemoglobinis located in vivo, Dp was 5·9 x 10-11 m2 s-1. Theseresults are discussed in relation to leghaemoglobin-facilitateddelivery of O2 to the respiring N2-fixing bacteroids in rootnodule cells.Copyright 1993, 1999 Academic Press Bacteroids, diffusion, Glycine max, N2 fixation, oxyleghaemoglobin, soybean, root nodules  相似文献   

2.
We recently identified a cDNA clone frommouse small intestine, which appears to be involved in folate transportwhen expressed in Xenopus oocytes. Theopen reading frame of this clone is identical to that of the reducedfolate carrier (RFC) (K. H. Dixon, B. C. Lanpher, J. Chiu, K. Kelley,and K. H. Cowan. J. Biol. Chem. 269: 17-20,1994). The characteristics of this cDNA clone [previously referred toas intestinal folate carrier 1 (IFC-1)] expressed inXenopus oocytes, however, were foundto be different from the characteristics of folate transport in nativesmall intestinal epithelial cells. To further study these differences,we determined the characteristics of RFC when expressed in anintestinal epithelial cell line, IEC-6, and compared the findings toits characteristics when expressed inXenopus oocytes. RFC was stablytransfected into IEC-6 cells by electroporation; its cRNA wasmicroinjected into Xenopus oocytes.Northern blot analysis of poly(A)+RNA from IEC-6 cells stably transfected with RFC cDNA (IEC-6/RFC) showed a twofold increase in RFC mRNA levels over controls. Similarly, uptake of folic acid and 5-methyltetrahydrofolate (5-MTHF) by IEC-6/RFCwas found to be fourfold higher than uptake in control sublines. Thisincrease in folic acid and 5-MTHF uptake was inhibited by treatingIEC-6/RFC cells with cholesterol-modified antisense DNAoligonucleotides. The increase in uptake was found to be mainly mediated through an increase in the maximal velocity(Vmax) of theuptake process [the apparent Michaelis-Menten constant(Km) alsochanged (range was 0.31 to 1.56 µM), but no specific trend wasseen]. In both IEC-6/RFC and control sublines, the uptake of bothfolic acid and 5-MTHF displayed 1)pH dependency, with a higher uptake at acidic pH 5.5 compared with pH7.5, and 2) inhibition to the sameextent by both reduced and oxidized folate derivatives. Thesecharacteristics are very similar to those seen in native intestinalepithelial cells. In contrast, RFC expressed inXenopus oocytes showed1) higher uptake at neutral andalkaline pH 7.5 compared with acidic pH 5.5 and2) higher sensitivity to reducedcompared with oxidized folate derivatives. Results of these studiesdemonstrate that the characteristics of RFC vary depending on the cellsystem in which it is expressed. Furthermore, the results may suggestthe involvement of cell- or tissue-specific posttranslationalmodification(s) and/or the existence of an auxiliary proteinthat may account for the differences in the characteristics of theintestinal RFC when expressed inXenopus oocytes compared with whenexpressed in intestinal epithelial cells.

  相似文献   

3.
TheCl secretory response ofcolonic cells to Ca2+-mediatedagonists is transient despite a sustained elevation of intracellular Ca2+. We evaluated the effects ofsecond messengers proposed to limit Ca2+-mediatedCl secretion on thebasolateral membrane,Ca2+-dependentK+ channel(KCa) in colonic secretorycells, T84. Neither protein kinase C (PKC) nor inositoltetrakisphosphate (1,3,4,5 or 3,4,5,6 form) affectedKCa in excised inside-out patches.In contrast, arachidonic acid (AA; 3 µM) potently inhibitedKCa, reducingNPo, the productof number of channels and channel open probability, by 95%. Theapparent inhibition constant for this AA effect was 425 nM. AAinhibited KCa in the presence ofboth indomethacin and nordihydroguaiaretic acid, blockers of thecyclooxygenase and lipoxygenase pathways. In the presence of albumin,the effect of AA on KCa wasreversed. A similar effect of AA was observed onKCa during outside-out recording.We determined also the effect of thecis-unsaturated fatty acid linoleate,the trans-unsaturated fatty acidelaidate, and the saturated fatty acid myristate. At 3 µM, all ofthese fatty acids inhibited KCa,reducing NPo by 72-86%. Finally, the effect of the cytosolic phospholipaseA2 inhibitorarachidonyltrifluoromethyl ketone(AACOCF3) on thecarbachol-induced short-circuit current(Isc) responsewas determined. In the presence ofAACOCF3, the peakcarbachol-inducedIsc response wasincreased ~2.5-fold. Our results suggest that AA generation inducedby Ca2+-mediated agonists maycontribute to the dissociation observed between the rise inintracellular Ca2+ evoked by theseagonists and the associatedCl secretory response.

  相似文献   

4.
Extracellular ATP is known to trigger apoptosis of thymocytesand lymphocytes through a P2Z receptor at which ATP is a partial agonist, giving only 70% of the maximum response of3'-O-(4-benzoyl)benzoyl-adenosine 5'-triphosphate (BzATP), a full agonist. This cytolytic receptor and its associated ion channel areCa2+ (andBa2+) selective but also passmolecules up to the size of ethidium cation (314 Da).RT-PCR showed identity between lymphocyte P2Z and thehP2X7 gene recently cloned fromhuman monocytes. When human leukemic B lymphocytes were incubated withATP and133Ba2+,an immediate influx of isotope occurred. It was augmented by 45% whenATP was added 10 min before isotope. Time-resolved flow cytometry wasused to examine kinetics of ethidium uptake in cells incubated withBzATP or the partial agonists ATP, 2-methylthioadenosine 5'-triphosphate, or adenosine5'-O-(3-thiotriphosphate).Maximally effective concentrations of BzATP (50 µM) induced immediateuptake of ethidium at a rate linear with time. In contrast, a delay was observed (30 s) before ethidium uptake commenced after addition ofmaximally effective ATP concentrations (500 µM) at 37°C, and thedelay was longer at 24°C. ATP addition 2-10 min beforeethidium abolished the delay. The delay was longer with other partialagonists and inversely related to maximal flux produced by agonist. Adelay was also observed for submaximal BzATP concentrations (10-20µM). P2Z/P2X7 inhibitors, KN-62and5-(N,N-hexamethylene)-amiloride, reduced the rate of agonist-induced ethidium uptake and lengthened thedelay. The results support a model in which agonists forP2Z/P2X7 receptor mediate animmediate channel opening allowing passage of small inorganic cations,followed by a slow further permeability increase allowing passage oflarger permeant cations like ethidium. The rate of the second stepdepends on time and temperature and the efficacy and concentration ofagonist and is slowed by antagonists, suggesting it depends on thefraction of P2Z/P2X7 channels held in the initial openstate.

  相似文献   

5.
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.2-fold. Initial uptake of phytanic acid uptake was unaltered apparently due to concomitant 5.3-, 1.6-, and 1.4-fold up-regulation of plasma membrane fatty acid transporter/translocase proteins (glutamic-oxaloacetic transaminase, fatty acid transport protein, and fatty acid translocase, respectively). Second, L-FABP gene ablation inhibited phytanic acid peroxisomal oxidation and microsomal esterification. These effects were consistent with reduced cytoplasmic fatty acid transport as evidenced by multiphoton fluorescence photobleaching recovery, where L-FABP gene ablation reduced the cytoplasmic, but not membrane, diffusional component of NBD-stearic acid movement 2-fold. Third, lipid analysis of the L-FABP gene-ablated hepatocytes revealed an altered fatty acid phenotype. Free fatty acid and triglyceride levels were decreased 1.9- and 1.6-fold, respectively. In summary, results with cultured primary hepatocytes isolated from L-FABP (+/+) and L-FABP (-/-) mice demonstrated for the first time a physiological role of L-FABP in the uptake and metabolism of branched-chain fatty acids.  相似文献   

6.
This study examines theCa2+ influx-dependent regulationof the Ca2+-activatedK+ channel(KCa) in human submandibulargland (HSG) cells. Carbachol (CCh) induced sustained increases in theKCa current and cytosolic Ca2+ concentration([Ca2+]i),which were prevented by loading cells with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Removal of extracellularCa2+ and addition ofLa3+ orGd3+, but notZn2+, inhibited the increases inKCa current and[Ca2+]i.Ca2+ influx during refill (i.e.,addition of Ca2+ to cells treatedwith CCh and then atropine inCa2+-free medium) failed to evokeincreases in the KCa current but achieved internal Ca2+ storerefill. When refill was prevented by thapsigargin,Ca2+ readdition induced rapidactivation of KCa. These dataprovide further evidence that intracellularCa2+ accumulation provides tightbuffering of[Ca2+]iat the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggestthat the Ca2+ influx-dependentregulation of the sustained KCacurrent in CCh-stimulated HSG cells is mediated by the uptake ofCa2+ into the internalCa2+ store and release via theinositol 1,4,5-trisphosphate-sensitive channel.

  相似文献   

7.
The transport of macromolecules through the lung interstitiumdepends on both bulk transport of fluid and diffusion. In the presentstudy, we studied the diffusion of albumin. Isolated rabbit lungs wereinflated with silicon rubber via airways and blood vessels, and twochambers were bonded to the sides of a 0.5-cm-thick slab that encloseda vessel with an intersititial cuff. One chamber was filled with eitheralbumin solution (2 or 5 g/dl) containing tracer125I-albumin or with tracer125I-albumin alone; the other wasfilled with Ringer solution. Unbound 125I was removed from the tracerby dialysis before use. The chamber with Ringer solution was placed inthe well of a NaI(Tl) scintillation detector. Diffusion oftracer through the interstitium was measured continuously for 60 h.Tracer mass (M) showed a time(t) delay followed by an increase toa steady-state flow(dM/dtconstant). Albumin diffusion coefficient(D) was given byL2/(6T),where T was the time intercept of thesteady-stateM-t line at zero M, andL was interstitial length.Interstitial cuff thickness-to-vessel radius ratio(Th0/R)was estimated by using Fick's law for steady-state diffusion. BothD andTh0/Rwere independent of albumin concentration.D averaged 6.6 × 107cm2/s, similar to the freeD for albumin. Values ofTh0/Raveraged 0.047 ± 0.024 (SD), near the values measuredhistologically. Thus pulmonary interstitial constituents offered norestriction to the diffusion of albumin.

  相似文献   

8.
To study and define the early time-dependent response (6 h) ofblocker-sensitive epithelial Na+channels (ENaCs) to stimulation ofNa+ transport by aldosterone, weused a new modified method of blocker-induced noise analysis todetermine the changes of single-channel current (iNa) channel open probability(Po), andchannel density(NT) undertransient conditions of transport as measured by macroscopic short-circuit currents(Isc). In threegroups of experiments in which spontaneous baseline rates of transportaveraged 1.06, 5.40, and 15.14 µA/cm2, stimulation of transportoccurred due to increase of blocker-sensitive channels.NT variedlinearly over a 70-fold range of transport (0.5-35µA/cm2). Relatively small andslow time-dependent but aldosterone-independent decreases ofPo occurredduring control (10-20% over 2 h) and aldosterone experimentalperiods (10-30% over 6 h). When thePo of control andaldosterone-treated tissues was examined over the 70-fold extendedrange of Na+ transport,Po was observedto vary inversely withIsc, falling from~0.5 to ~0.15 at the highest rates ofNa+ transport or ~25% per3-fold increase of transport. Because decreases ofPo from anysource cannot explain stimulation of transport by aldosterone, it isconcluded that the early time-dependent stimulation ofNa+ transport in A6 epithelia isdue exclusively to increase of apical membraneNT.

  相似文献   

9.
The absorption of nitrous oxide(N2O) during unidirectional flowwas compared with the rate of uptake of nitric oxide (NO). At flowrates of 10, 20, and 60 ml/min from one nostril to the other, with thesoft palate closed, the N2Oreached a steady-state rate of absorption in 5-15 min. The meansuperficial capillary blood flow (n = 5) calculated from solubility and the steady-state rate ofN2O absorption ranged from 13.3 to15.9 ml/min. The relation between absorption ofN2O in the nose and capillaryblood flow fits a ventilation-perfusion model used by others todescribe uptake of inert, soluble gases in the rat nose. By contrast,the rate of uptake of NO gas, which is chemically reactive, is25-31 times as great as predicted by just its blood-to-airpartition coefficient. Exogenous NO (16.9 parts/million) did not induce nasal vasodilation as measured with laser Doppler andN2O absorption methods. Thedifference between the measured rate of uptake of NO and the rate ofuptake attributable to its partition coefficient in blood at the rateof blood flow calculated from N2Ouptake is probably due to chemical reaction of NO in mucous secretions, nasal tissues, and capillary blood.

  相似文献   

10.
为了探讨胚胎干细胞分化心肌细胞(ESCM)毒蕈碱受体的表达规律及β肾上腺素能系统对M2受体表达的影响,采用10-4 mol/L维生素C体外诱导小鼠M13胚胎干细胞分化为心肌细胞,用RT-PCR检测到分化后的细胞表达心肌细胞特异性基因Nkx2.5和β肌球蛋白重链;用免疫荧光法检测到分化后的细胞表达心肌细胞特异性标志物α辅肌动蛋白.小鼠胚胎干细胞分化前表达M1和M2毒蕈碱受体,在分化过程中,M1受体表达逐渐下降, M2受体表达在第3 d显著下降,此后表达逐渐增加,在第14 d达到高峰;Western印迹结果显示,异丙肾上腺素明显抑制M2受体的表达,选择性β1肾上腺素受体拮抗剂CGP20712A明显上调其表达,而选择性β2肾上腺素受体拮抗剂 ICI118551对其表达无影响.本实验表明,小鼠胚胎干细胞分化心肌细胞表达毒蕈碱受体, β肾上腺素能系统对M2受体表达有调控作用.  相似文献   

11.
Effects of fatty acids on BK channels in GH(3) cells   总被引:6,自引:0,他引:6  
Ca2+-activated K+ (BK) channels inGH3 cells are activated by arachidonic acid (AA). Becausecytosolic phospholipase A2 can produce other unsaturatedfree fatty acids (FFA), we examined the effects of FFA on BK channelsin excised patches. Control recordings were made at several holdingpotentials. The desired FFA was added to the bath solution, and thevoltage paradigm was repeated. AA increased the activity of BK channelsby 3.6 ± 1.6-fold. The cis FFA, palmitoleic, oleic,linoleic, linolenic, eicosapentaenoic, and the triple bond analog ofAA, eicosatetraynoic acid, all increased BK channel activity, whereasstearic (saturated) or the trans isomers elaidic,linolelaidic, and linolenelaidic had no effect. The cisunsaturated FFA shifted the open probability vs. voltage relationshipsto the left without a change in slope, suggesting no change in thesensitivity of the voltage sensor. Measurements of membrane fluidityshowed no correlation between the change of membrane fluidity and thechange in BK channel activation. In addition, AA effects on BK channelswere unaffected in the presence of N-acetylcysteine.Arachidonyl-CoA, a membrane impermeable analog of AA, activateschannels when applied to the cytosolic surface of excised patches,suggesting an effect of FFAs from the cytosolic surface of BK channels.Our data imply a direct interaction between cis FFA and theBK channel protein.

  相似文献   

12.
Activation of membrane P2X7 receptors by extracellular ATP [or its analog 2',3'-O-(4-benzoylbenzoyl)-ATP] results in the opening within several milliseconds of an integral ion channel that is permeable to small cations. If the ATP application is maintained for several seconds, two further sequelae occur: there is a gradual increase in permeability to the larger cation N-methyl-D-glucamine and the cationic propidium dye quinolinium, 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide (YO-PRO-1) enters the cell. The similarity in the time course of these two events has led to the widespread view that N-methyl-D-glucamine and YO-PRO-1 enter through a common permeation pathway, the "dilating" P2X7 receptor pore. Here we provide two independent lines of evidence against this view. We studied single human embryonic kidney cells expressing rat P2X7 receptors with patch-clamp recordings of membrane current and with fluorescence measurements of YO-PRO-1 uptake. First, we found that maintained application of the ATP analog did not cause any increase in N-methyl-D-glucamine permeability when the extracellular solution contained its normal sodium concentration, although YO-PRO-1 uptake was readily observed. Second, we deleted a cysteine-rich 18-amino acid segment in the intracellular juxtamembrane region of the P2X7 receptor. This mutated receptor showed normal YO-PRO-1 uptake but had no permeability to N-methyl-D-glucamine. Together, the clear differential effects of extracellular sodium ions or of mutation of the receptor strongly suggest that N-methyl-D-glucamine and YO-PRO-1 do not enter the cell by the same permeation pathway. ATP; cation channel; permeability; quinolinium, 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide  相似文献   

13.
To evaluate the effects of contractions on thekinetics of uptake and oxidation of palmitate in a physiological musclepreparation, rat hindquarters were perfused with glucose (6 mmol/l),albumin-bound [1-14C]palmitate, andvarying amounts of albumin-bound palmitate (200-2,200 µmol/l) atrest and during muscle contractions. When plotted against the unboundpalmitate concentration, palmitate uptake and oxidation displayedsimple Michaelis-Menten kinetics with estimated maximal velocity(Vmax)and Michaelis-Menten constant(Km) values of42.8 ± 3.8 (SE)nmol · min1 · g1and 13.4 ± 3.4 nmol/l for palmitate uptake and 3.8 ± 0.4 nmol · min1 · g1and 8.1 ± 2.9 nmol/l for palmitate oxidation, respectively, at rest.Whereas muscle contractions increased theVmaxfor both palmitate uptake and oxidation to 91.6 ± 10.1 and 16.5 ± 2.3 nmol · min1 · g1,respectively, theKm remainedunchanged.Vmaxand Km estimates obtained from Hanes-Woolf plots (substrate concentration/velocity vs.substrate concentration) were not significantly different. In theresting perfused hindquarter, an increase in palmitate delivery from31.9 ± 0.9 to 48.7 ± 1.2 µmol · g1 · h1by increasing perfusate flow was associated with a decrease in thefractional uptake of palmitate so that the rates of uptake andoxidation of palmitate remained unchanged. It is concluded that therates of uptake and oxidation of long-chain fatty acids (LCFA) saturatewith an increase in the concentration of unbound LCFA in perfusedskeletal muscle and that muscle contractions, but not an increase inplasma flow, increase theVmaxfor LCFA uptake and oxidation. The data are consistent with the notion that uptake of LCFA in muscle may be mediated in part by a transport system.

  相似文献   

14.
Mode of photosynthesis in Mesembryanthemum crystallinum changesfrom C3 to Crassulacean acid metabolism (CAM) when the plantswere stressed with high salinity. [14C]Pyruvate uptake for 30s into intact chloroplasts isolated from leaves of the CAM modeof M. crystallinum was enhanced more than 5-fold in the lightcompared with that in the dark. The stromal concentration ofpyruvate in the light reached to more than 2.5 times of themedium. In contrast, little or no pyruvate uptake occurred inchloroplasts from C3 leaves in either light or dark condition.The initial uptake rate (10 s incubation at 4°C) into theCAM chloroplasts in the light was about 3-fold higher than therate in the dark. Km and Vmax of the initial uptake in the lightwere 0.54 mM and 8.5 µmol (mg Chl)–1 h–1 respectively.These suggest that pyruvate was actively incorporated into theCAM chloroplasts against its concentration gradient across theenvelope in the light. When hydroponically grown M. crystallinumwere stressed by 350 mM NaCl, the capacity of chloroplasts forpyruvate uptake was induced in 6 d corresponding to the inductionof the activities of PEP-carboxylase and NAD(P)+-malic enzymesin response to salt stress. (Received October 12, 1995; Accepted January 19, 1996)  相似文献   

15.
Thecharacteristics of L-lactic acid transport across thetrophoblast basal membrane were investigated and compared with those across the brush-border membrane by using membrane vesicles isolated from human placenta. The uptake ofL-[14C]lactic acid into basal membranevesicles was Na+ independent, and an uphill transport wasobserved in the presence of a pH gradient([H+]out > [H+]in).L-[14C]lactic acid uptake exhibitedsaturation kinetics with a Km value of 5.89 ± 0.68 mM in the presence of a pH gradient.p-Chloromercuribenzenesulfonate and-cyano-4-hydroxycinnamate inhibited the initial uptake, whereas phloretin or 4,4'-diisothiocyanostilbene-2,2'-disulfonate did not.Mono- and dicarboxylic acids suppressed the initial uptake. Inconclusion, L-lactic acid transport in the basal membraneis H+ dependent and Na+ independent, as is alsothe case for the brush-border membrane transport, and itscharacteristics resemble those of monocarboxylic acid transporters.However, there were several differences in the effects of inhibitorsbetween basal and brush-border membrane vesicles, suggesting that thetransporter(s) involved in L-lactic acid transport in thebasal membrane of placental trophoblast may differ from those in thebrush-border membrane.

  相似文献   

16.
The human renal Na-PO4cotransporter gene NaPi-3 was expressed in human embryonic kidneyHEK-293 cells, and the transport characteristics were measured in cellstransfected with a vector containing NaPi-3 or with the vector alone(sham transfected). The initial rate of32PO4influx had saturation kinetics for external Na andPO4 with K Na1/2 of 128 mM(PO4 = 0.1 mM) andK PO41/2of 0.084 mM (extracellular Na = 143 mM) in sham- and NaPi-3-transfectedcells expressing the transporter. Transfection had no effect on theNa-independent 32PO4influx, but transfection increased Na-dependent32PO4influxes 2.5- to 5-fold. Of the alkali cations, only Na significantly supported PO4 influx. Arsenateinhibited flux with an inhibition constant of 0.4 mM. The phosphatetransport in sham- and NaPi-3-transfected cells has nearly the sametemperature dependence in the absence and presence of extracellularNa. The Na-dependent phosphate flux decreased with pH insham-transfected cells but was pH independent in transfected cells. TheNa-dependent32PO4influx was inhibited byp-chloromercuriphenylsulfonate,phosphonoformate, phloretin, vanadate, and5-(N-methyl-N-isobutyl)-amiloridebut not by amiloride or other amiloride analogs. These functional characteristics are in general agreement with the known behavior ofNaPi-3 homologues in the renal tubule of other species and, thus,demonstrate the fidelity of this transfection system for the study ofthis protein. Commensurate with the increased functional expression,there was an increase in the amount of NaPi-3 protein by Westernanalysis.

  相似文献   

17.
Neurons aremechanically robust. During prolonged swelling, molluscan neurons cantriple their apparent membrane area. They gain surface area andcapacitance independent of extracellular Ca concentration([Ca]e), but it isunknown if an increase in intracellular Ca concentration([Ca]i) isnecessary. If Ca for stimulating exocytosis is unnecessary, it ispossible that swelling-induced membrane tension changes directlytrigger surface area readjustments. If, however, Ca-mediated but nottension-mediated membrane recruitment is responsible for surface areaincreases, swelling neurons should sustain elevated levels of[Ca]i. The purpose ofthis investigation is to determine if the[Ca]i in swellingneurons attains levels high enough to promote exocytosis and if anysuch increase is required. Lymnaeaneurons were loaded with the Ca concentration indicator fura 2. Calibration was performed in situ using 4-bromo-A-23187 and Ca-ethyleneglycol-bis(-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), with free Ca concentration ranging from 0 to 5 µM. Swelling perturbations (medium osmolarity reduced to 25% for 5 min)were done at either a standard[Ca]e or very low[Ca]e level (0.9 mM or0.13 µM, respectively). In neither case did the[Ca]i increase tolevels that drive exocytosis. We also monitored osmomechanically drivenmembrane dynamics [swelling, then formation and reversal ofvacuole-like dilations (VLDs)] with the[Ca]i clamped below 40 nM via1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). [Ca]idid not change with swelling, and VLD behavior was unaffected,consistent with tension-driven,[Ca]i-independent surface area adjustments. In addition, neurons with[Ca]i clamped at 0.1 µM via an ionophore could produce VLDs. We conclude that, undermechanical stress, neuronal membranes are compliant by virtue ofsurface area regulatory adjustments that operate independent of[Ca]i. The findingssupport the hypothesis that plasma membrane area is regulated in partby membrane tension.

  相似文献   

18.
These experiments were performed totest the hypotheses that myosin light chain 17 (MLC17) aand b isoform expression varies between individual vascular smoothmuscle (SM) cells and that their expression correlates with cellunloaded shortening velocity. Single SM cells isolated from rabbitaorta and carotid arteries were used to measure unloaded shorteningvelocity and subsequently were analyzed via RT-PCR forMLC17 a and b mRNA ratio. The MLC17b/a mRNA andprotein ratios from adjacent tissue sections correlate very well(R2 = 0.68), allowing use of the mRNA ratio topredict the protein ratio. The rabbit MLC17 isoform proteinsequence was found to be similar to, but unique from, the swine, mouse,and chicken sequences. Isolated single SM cells from the aorta andcarotid have resting lengths of 70-280 µm and shorten to33-88 µm after contraction. Isolated cell maximum unloadedshortening velocity is highly variable (0.5-7.5 µm/s) butbecomes more uniform when normalized to initial cell length(0.01-0.05 cell lengths/s). Carotid cells activated in thepresence of okadaic acid (1 µm) have mean maximal unloaded shorteningvelocities not significantly different from carotid cells activatedwithout okadaic acid (0.016 vs. 0.019 cell lengths/s). Resting celllength before activation is significantly correlated with final celllength after unloaded shortening. Neither initial cell length, finalcell length, total cell length change, nor maximum unloaded shorteningvelocity (absolute or normalized) was significantly correlated withsingle-cell MLC17b/a mRNA ratio. These studies wereperformed in isolated single SM cells where unloaded shorteningvelocity and MLC17b/a mRNA ratios were measured in the samecell. In this preparation, the three-dimensional organization andmilieu of the cell is kept intact, but without the intercellularheterogeneity concerns of multicellular preparations. These resultssuggest the MLC17b/a ratio is variable between individual SM cells from the same tissue, but it is not a determinant of unloadedshortening velocity in single SM cells.

  相似文献   

19.
The mechanism involved inN-methyl-D-glucamine(NMDA)-induced Ca2+-dependentintracellular acidosis is not clear. In this study, we investigated indetail several possible mechanisms using cultured rat cerebellargranule cells and microfluorometry [fura 2-AM or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM].When 100 µM NMDA or 40 mM KCl was added, a marked increase in theintracellular Ca2+ concentration([Ca2+]i)and a decrease in the intracellular pH were seen. Acidosis wascompletely prevented by the use ofCa2+-free medium or1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca2+. The following fourmechanisms that could conceivably have been involved were excluded:1)Ca2+ displacement of intracellularH+ from common binding sites;2) activation of an acid loader or inhibition of acid extruders; 3)overproduction of CO2 or lactate; and 4) collapse of the mitochondrialmembrane potential due to Ca2+uptake, resulting in inhibition of cytosolicH+ uptake. However,NMDA/KCl-induced acidosis was largely prevented by glycolyticinhibitors (iodoacetate or deoxyglucose in glucose-free medium) or byinhibitors of the Ca2+-ATPase(i.e.,Ca2+/H+exchanger), including La3+,orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca2+-ATPaseis involved in NMDA-induced intracellular acidosis in granule cells. Wealso provide new evidence that NMDA-evoked intracellular acidosisprobably serves as a negative feedback signal, probably with theacidification itself inhibiting the NMDA-induced[Ca2+]i increase.

  相似文献   

20.
Cells respond to a wide range of mechanical stimuli such as fluid shear and strain, although the contribution of gravity to cell structure and function is not understood. We hypothesized that bone-forming osteoblasts are sensitive to increased mechanical loading by hypergravity. A centrifuge suitable for cell culture was developed and validated, and then primary cultures of fetal rat calvarial osteoblasts at various stages of differentiation were mechanically loaded using hypergravity. We measured microtubule network morphology as well as release of the paracrine factor prostaglandin E2 (PGE2). In immature osteoblasts, a stimulus of 10x gravity (10 g) for 3 h increased PGE2 2.5-fold and decreased microtubule network height 1.12-fold without affecting cell viability. Hypergravity (3 h) caused dose-dependent (5–50 g) increases in PGE2 (5.3-fold at 50 g) and decreases (1.26-fold at 50 g) in microtubule network height. PGE2 release depended on duration but not orientation of the hypergravity load. As osteoblasts differentiated, sensitivity to hypergravity declined. We conclude that primary osteoblasts demonstrate dose- and duration-dependent sensitivity to gravitational loading, which appears to be blunted in mature osteoblasts. mechanotransduction; differentiation; bone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号