首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Kemal  J R Knowles 《Biochemistry》1981,20(13):3688-3695
The interaction of the sulfone of penicillanic acid with the TEM-2 beta-lactamase from Escherichia coli has been investigated as a function of pH between pH 7.0 and 9.6. The first-formed acyl-enzyme suffers one of three fates: deacylation, tautomerization to a bound enamine that transiently inhibited the enzyme, and a process (possibly transimination) that leads to enzyme inactivation. The observed changes in ultraviolet absorbance are consistent with the initially observed product of deacylation being the enamine tautomer (4) of the imine from malonsemialdehyde and penicillamine sulfinate. The same enamine can be generated nonenzymically from the sulfone at high pH. The transiently inhibited enzyme appears to be the same enamine attached to the enzyme by an ester linkage. The rather complex kinetic behavior can be deconvuluted by exploiting the effect of pH on the partitioning of the acyl-enzyme between deacylation and the transiently inhibited form of the enzyme. The pathways followed by penicillanic acid sulfone provide a model for the behavior of a number of other reagents that inactivate the beta-lactamase.  相似文献   

2.
The reactions of beta-lactamases of Actinomadura R39 and Streptomyces albus G with clavulanate proceed along branched pathways. Both enzymes perform the hydrolysis of this beta-lactam with rather high efficiencies (kcat. = 18s-1 and 52s-1 respectively). If large clavulanate/enzyme ratios are used, complete inactivation of the enzymes is observed. At lower ratios, inactivation is only partial. Irreversible inactivation occurs after 400 and 20000 turnovers for the A. R39 and S. albus G enzymes respectively. With the A. R39 beta-lactamase, a transiently inhibited complex is also formed that remains undetectable with the S. albus G beta-lactamase. Kinetic models are presented and studied for the interaction between clavulanate and both enzymes. A tentative general reaction scheme is also discussed.  相似文献   

3.
The kinetics of the inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid are described. Loss of beta-lactamase activity is accompanied by a decrease in protein fluorescence, by the appearance of a protein-bound chromophore at 326 nm, and by loss of tritium from 6 alpha-[3H]-6 beta-bromopenicillanic acid. It is shown that all of the above changes probably have the same rate-determining step. The inactivation reaction is competitively inhibited by cephalosporin C, a competitive inhibitor of this enzyme, and by covalently bound clavulanic acid, suggesting that 6 beta-bromopenicillanic acid reacts directly with the beta-lactamase active site. It is proposed that this inhibitor reacts initially as a normal substrate and that the rate-determining step of the inactivation is acylation of the enzyme. A rapid irreversible inactivation reaction rather than normal hydrolysis of the acyl-enzyme then follows acylation; 6 beta-bromopenicillanic acid is thus a suicide substrate.  相似文献   

4.
Badarau A  Page MI 《Biochemistry》2006,45(36):11012-11020
Metallo-beta-lactamases are native zinc enzymes that catalyze the hydrolysis of beta-lactam antibiotics but are also able to function with cobalt (II) and require one or two metal ions for catalytic activity. The kinetics of the hydrolysis of benzylpenicillin catalyzed by cobalt substituted beta-lactamase from Bacillus cereus (BcII) are biphasic. The dependence of enzyme activity on pH and metal-ion concentration indicates that only the di-cobalt enzyme is catalytically active. A mono-cobalt enzyme species is formed during the catalytic cycle, which is virtually inactive and requires the association of another cobalt ion for turnover. Two intermediates with different metal to enzyme stoichiometries are formed on a branched reaction pathway. The di-cobalt enzyme intermediate is responsible for the direct catalytic route, which is pH-independent between 5.5 and 9.5 but is also able to slowly lose one bound cobalt ion via the branching route to give the mono-cobalt inactive enzyme intermediate. This inactivation pathway of metal-ion dissociation occurs by both an acid catalyzed and a pH-independent reaction, which is dependent on the presence of an enzyme residue of pK(a) = 8.9 +/- 0.1 in its protonated form and shows a large kinetic solvent isotope effect (H(2)O/D(2)O) of 5.2 +/- 0.5, indicative of a rate-limiting proton transfer. The pseudo first-order rate constant to regenerate the di-cobalt beta-lactamase from the mono-cobalt enzyme intermediate has a first-order dependence on cobalt-ion concentration in the pH range 5.5-9.5. The second-order rate constant for metal-ion association is dependent on two groups of pK(a) 6.32 +/- 0.1 and 7.47 +/- 0.1 being in their deprotonated basic forms and one group of pK(a) 9.48 +/- 0.1 being in its protonated form.  相似文献   

5.
Beta-lactamase inactivation by mechanism-based reagents   总被引:1,自引:0,他引:1  
The mechanistic pathway followed by the E. coli RTEM beta-lactamase has been studied with a view to clarifying the mode of action of a number of recently discovered inactivators of the enzyme. There is clear evidence that the beta-lactamase-catalysed hydrolysis of the 7-alpha-methoxycephem, cefoxitin, proceeds via an acyl-enzyme intermediate. An analysis of the inactivation reactions of all the known beta-lactam derivatives that result in irreversible loss of enzyme activity permits the identification of three structural features required for a beta-lactamase inactivator. The application of these principles suggests a new group of mechanism-based inactivators of the enzyme: the sulphones of N-acyl derivatives of 6-beta-aminopenicillanic acid that are themselves poor substrates for the enzyme. These sulphones are powerful inactivators of the beta-lactamase.  相似文献   

6.
The role of the non-conserved amino acid residue at position 104 of the class A beta-lactamases, which comprises a highly conserved sequence of amino acids at the active sites of these enzymes, in both the hydrolysis of beta-lactam substrates and inactivation by mechanism-based inhibitors was investigated. Site-directed mutagenesis was performed on the penPC gene encoding the Bacillus cereus 569/H beta-lactamase I to replace Asp104 with the corresponding Staphylococcus aureus PC1 residue Ala104. Kinetic data obtained with the purified Asp104Ala B. cereus 569/H beta-lactamase I was compared to that obtained from the wild-type B. cereus and S. aureus enzymes. Replacement of amino acid residue 104 had little effect on the Michaelis parameters for the hydrolysis of both S- and A-type penicillins. Relative to wild-type enzyme, the Asp104Ala beta-lactamase I had 2-fold higher Km values for benzylpenicillin and methicillin, but negligible difference in Km for ampicillin and oxacillin. However, kcat values were also slightly increased resulting in little change in catalytic efficiency, kcat/Km. In contrast, the Asp104Ala beta-lactamase I became more like the S. aureus enzyme in its response to the mechanism-based inhibitors clavulanic acid and 6-beta-(trifluoromethane sulfonyl)amido-penicillanic acid sulfone with respect to both response to the inhibitors and subsequent enzymatic properties. Based on the known three-dimensional structures of the Bacillus licheniformis 749/C, Escherichia coli TEM and S. aureus PC1 beta-lactamases, a model for the role of the non-conserved residue at position 104 in the process of inactivation by mechanism-based inhibitors is proposed.  相似文献   

7.
D G Brenner  J R Knowles 《Biochemistry》1984,23(24):5833-5839
When penicillanic acid sulfone in large molar excess is incubated with the RTEM beta-lactamase, the enzyme becomes inactivated irreversibly. From studies of the consequential spectroscopic changes, from the use of specifically tritiated penicillanic acid sulfone, and from comparison by isoelectric focusing of the enzyme after inactivation by the sulfone and by clavulanic acid, the inactivated enzyme appears to be cross-linked by a beta-aminoacrylate fragment deriving from C-5, C-6, and C-7 of the original beta-lactam. Model studies on the behavior of alcoholic solutions of penicillanic acid sulfone in the presence of amines are entirely consistent with this interpretation.  相似文献   

8.
The CMY-2 beta-lactamase, a plasmid determined class C cephalosporinase, was shown to be susceptible to inhibition by tazobactam (K(i)=40 microM). The reaction product(s) of CMY-2 beta-lactamase with the beta-lactamase inhibitor tazobactam were analyzed by electrospray ionization/mass spectrometry (ESI/MS) to characterize the prominent intermediates of the inactivation pathway. The ESI/MS determined mass of CMY-2 beta-lactamase was 39851+/-3 Da. After inactivating CMY-2 beta-lactamase with excess tazobactam, a single species, M(r)=39931+/-3.0, was detected. Comparison of the peptide maps from tryptic digestion of the native enzyme and the inactivated beta-lactamase followed by LC/MS identified two 22 amino acid peptides containing the active site Ser64 modified by a fragment of tazobactam. These two peptides were increased in mass by 70 and 88 Da, respectively. UV difference spectra following inactivation revealed the presence of a new species with a 302 nm lambda(max). Based upon the increase in molecular mass of the tazobactam inactivated CMY-2 beta-lactamase, we propose that during the inactivation of this beta-lactamase by tazobactam an imine is formed. Tautomerization forms the spectrally observed enamine. Hydrolysis generates the covalently attached malonyl semialdehyde, its hydrate, or an enol. This work provides information on the mass of a stable enzyme intermediate of a class C beta-lactamase inactivated by tazobactam and, for the first time, unequivocal evidence that a cross-linked species is not required for apparent inactivation.  相似文献   

9.
The hydrolysis of beta-lactam antibiotics by the serine-beta-lactamases proceeds via an acyl-enzyme intermediate. In the class A enzymes, a key catalytic residue, Glu166, activates a water molecule for nucleophilic attack on the acyl-enzyme intermediate. The active site architecture raises the possibility that the location of the catalytic carboxylate group may be shifted while still maintaining close proximity to the hydrolytic water molecule. A double mutant of the Staphylococcus aureus PC1 beta-lactamase, E166Q:N170D, was produced, with the carboxylate group shifted to position 170 of the polypeptide chain. A mutant protein, E166Q, without a carboxylate group and with abolished deacylation, was produced as a control. The kinetics of the two mutant proteins have been analyzed and the crystal structure of the double mutant protein has been determined. The kinetic data confirmed that deacylation was restored in E166Q:N170D beta-lactamase, albeit not to the level of the wild-type enzyme. In addition, the kinetics of the double mutant enzyme follows progressive inactivation, characterized by initial fast rates and final slower rates. The addition of ammonium sulfate increases the size of the initial burst, consistent with stabilization of the active form of the enzyme by salt. The crystal structure reveals that the overall fold of the E166Q:N170D enzyme is similar to that of native beta-lactamase. However, high crystallographic temperature factors are associated with the ohm-loop region and some of the side chains, including Asp170, are partially or completely disordered. The structure provides a rationale for the progressive inactivation of the Asp170-containing mutant, suggesting that the flexible ohm-loop may be readily perturbed by the substrate such that Asp170's carboxylate group is not always poised to facilitate hydrolysis.  相似文献   

10.
p-Hydroxymercuribenzoate is a non-competitive inhibitor of beta-lactamase I from Bacillus cereus and also, after preliminary preincubation, an inactivator of the enzyme. Submitted to the simultaneous action of PCMB plus dicloxacillin, the enzyme completely loses its activity. Extensive dialysis can restore the enzymatic activity only if preincubation had been carried out with either PCMB or dicloxacillin but not if both inhibitors had been simultaneously present. Mercaptoethanol protects the enzyme from the action of PCMB, but not from the severe inactivation caused by dicloxacillin-PCMB mixtures. All these data suggest the formation of a complex between PCMB and the acyl-enzyme intermediate generated upon hydrolysis of the beta-lactam bond of dicloxacillin.  相似文献   

11.
6-Aminopenicillanic acid, 7-aminocephalosporanic acid, mecillinam and quinacillin have varying substrate activities for both the R39 beta-lactamase (excreted by Actinomadura R39) and the G beta-lactamase (excreted by Streptomyces albus G). Cefoxitin and quinacillin sulphone are not recognized by the G beta-lactamase and are weak inactivators of the R39 beta-lactamase. N-Formimidoylthienamycin is a poor substrate for the G beta-lactamase and a potent inactivator of the R39 beta-lactamase. The high value of the bimolecular rate constant for enzyme inactivation is mainly due to a very low dissociation constant (1 microM). Clavulanate is an inactivator of both G and R39 beta-lactamases. The reaction with this latter enzyme is a branched pathway where normal turnover and permanent enzyme inactivation occur concomitantly. Between 28 and 43 molecules of clavulanate are hydrolysed before one of them has the opportunity to inactivate one molecule of enzyme.  相似文献   

12.
Pelto RB  Pratt RF 《Biochemistry》2008,47(46):12037-12046
The class C serine beta-lactamase of Enterobacter cloacae P99 is irreversibly inhibited by O-aryloxycarbonyl hydroxamates. A series of these new inhibitors has been prepared to investigate the kinetics and mechanism of the inactivation reaction. A pH-rate profile for the reaction indicated that the reactive form of the inhibitor is neutral rather than anionic. The reaction rate is enhanced by electron-withdrawing aryloxy substituents and by hydrophobic substitution on both aryloxy and hydroxamate groups. Kinetics studies show that the rates of loss of the two possible leaving groups, aryloxide and hydroxamate, are essentially the same as the rate of enzyme inactivation. Nucleophilic trapping experiments prove, however, that the aryl oxide is the first to leave. It is likely, therefore, that the rate-determining step of inactivation is the initial acylation reaction, most likely of the active site serine, yielding a hydroxamoyl-enzyme intermediate. This then partitions between hydrolysis and aminolysis by Lys 315, the latter to form an inactive, cross-linked active site. A previously described crystal structure of the inactivated enzyme shows a carbamate cross-link of Ser 64 and Lys 315. Structure-activity studies of the reported compounds suggest that they do not react at the enzyme active site in the same way as normal substrates. In particular, it appears that the initial acylation by these compounds does not involve the oxyanion hole, an unprecedented departure from known and presumed reactivity. Molecular modeling suggests that an alternative oxyanion hole may have been recruited, consisting of the side chain functional groups of Tyr 150 and Lys 315. Such an alternative mode of reaction may lead to the design of novel inhibitors.  相似文献   

13.
The interaction of clavulanic acid with beta-lactamase from Staphylococcus aureus was investigated, particularly with a view to determining whether conformational effects are involved. The inactivation at neutral pH is essentially stoichiometric, leading to an inactive species with an enamine chromophore. Two forms of the enamine were observed, the first-formed having a positive ellipticity with a maximum near 290 nm. This species slowly converted into the stable form of the inactivated enzyme that had a negative ellipticity with a minimum at 275 nm. This change in sign of the ellipticity of the enamine is consistent with the previously proposed cis-trans isomerization of the enamine [Cartwright & Coulson (1979) Nature (London) 278, 360-361). Both the far-u.v.c.d. and the intrinsic viscosity of the inactivated enzyme indicated that negligible change in conformation of the enzyme accompanied inactivation. The rates of inactivation and enamine formation were compared at low temperatures, where the initial rates were slow enough to be monitored. The rate of loss of 95% of the catalytic activity was almost 100-fold faster than the rate of formation of the first-formed enamine species. The remaining 5% activity was lost with a rate comparable with that for formation of the initial enamine. The simplest explanation of these results is that a relatively stable acyl-enzyme intermediate builds up initially and more slowly partitions between turnover (hydrolysis) and enamine formation. The initially formed enamine is in the cis conformation but slowly isomerizes to the more stable trans form.  相似文献   

14.
J Fisher  R L Charnas  J R Knowles 《Biochemistry》1978,17(11):2180-2184
The kinetic details of the irreversible inactivation of the Escherichia coli RTEM beta-lactamase by clavulanic acid have been elucidated. Clavulanate is destroyed by the enzyme and simultaneously inhibits it by producing two catalytically inactive forms. One of these is transiently stable and decomposes to free enzyme (k = 3.8 X 10(-3) S-1), while the other corresponds to an irreversibly inactivated form. The transient complex is formed from the Michaelis complex at a rate (k approximately 3 X 10(-2) S-1) which is some threefold faster than the rate of formation of the irreversibly inactivated complex. The transient complex is, therefore, the principle enzyme form present after short time periods. In the presence of excess clavulanate, however, all the enzyme accumulates into the irreversibly inactivated form. The number of clavulanate turnovers that occur prior to complete enzyme inactivation is 115.  相似文献   

15.
6-Acetylmethylenepenicillanic acid is a new kinetically irreversible inhibitor of various beta-lactamases. Interaction between 6-acetylmethylenepenicillanate and purified TEM-1 beta-lactamase during the inactivation process was investigated. 6-Acetylmethylenepenicillanate inhibited the enzyme in a second-order fashion with a rate constant of 0.61 microM-1 . S-1. The apparent inactivation constant decreased in the presence of increasing concentrations of the substrate benzylpenicillin. Native enzyme (pI 5.4) was converted into two inactive forms with pI 5.25 and 5.15, the latter form being transient and readily converted into the more stable form with pI 5.15. Even a 50-fold excess of inhibitor over enzyme did not produce any other inactivated species of the enzyme. All the results obtained suggest that 6-acetylmethylenepenicillanate is a potent irreversible and active-site-directed inhibitor of TEM-1 beta-lactamase.  相似文献   

16.
R L Charnas  J Fisher  J R Knowles 《Biochemistry》1978,17(11):2185-2189
Incubation of clavulanic acid with the beta-lactamase from Escherichia coli RTEM leads to enzyme-catalyzed depletion of clavulanic acid, to transient inhibition, and to irreversible inactivation of the enzyme. Both the transiently inhibited and the irreversibly inactivated species show a marked increase in the absorbance at 281 nm that is proportional to the decrease in enzyme activity. Hydroxylamine treatment of irreversibly inactivated enzyme restores about one-third of the catalytic activity, with a concomitant decrease in absorbance at 281 nm. Polyacrylamide isoelectric focusing of the irreversibly inactivated enzyme shows three bands of approximately equal intensity, different from native enzyme. Upon hydroxylamine treatment, one of the three bands disappears and now focuses identically with native enzyme. It is evident that the irreversible inactivation of enzyme by an excess of clavulanic acid generates three products, one of which can be reactivated by hydroxylamine.  相似文献   

17.
The beta-lactamases of Streptomyces albus G and Actinomadura R39 are inactivated by beta-iodopenicillanate. However, in contrast with the beta-lactamase I from Bacillus cereus, they also efficiently catalyse the hydrolysis of the inactivator; with the S. albus G enzyme, kcat. is larger than 25s-1 and the number of turnovers before inactivation is 515. With the A. R39 enzyme, kcat. is larger than 50s-1 and the number of turnovers before inactivation is 80. After hydrolysis of the beta-lactam amide bond, the product rearranges into 2.3-dihydro-2,2-dimethyl-1,4-thiazine-3,6-dicarboxylate, which exhibits an absorption maximum at 305 nm.  相似文献   

18.
Methanol or ethanol can replace water in the action of certain chromosomal beta-lactamases on benzylpenicillin: the products are alpha-methyl or alpha-ethyl benzylpenicilloate. The beta-lactamases were from a mutant of Pseudomonas aeruginosa 18S that produces the enzyme constitutively [Flett, Curtis & Richmond (1976) J. Bacteriol. 127, 1585-1586; Berks, Redhead & Abraham (1982) J. Gen. Microbiol. 128, 155-159] and from Escherichia coli K12 (the ampC beta-lactamase) [Lindstr?m, Boman & Steele (1970) J. Bacteriol. 101, 218-231]. The variation of the rates of alcoholysis and hydrolysis with concentration of alcohol show that the rate-determining step is breakdown of an intermediate. This intermediate is likely to be the acyl-enzyme. The esters, alpha-methyl or alpha-ethyl benzylpenicilloate, are themselves substrates for the Pseudomonas beta-lactamase, benzylpenicilloic acid being formed. Thus this beta-lactamase can be an esterase. The kinetics for the hydrolysis of cloxacillin by the Pseudomonas beta-lactamase are consistent with the acyl-enzyme, formed by acylation of serine-80, being an intermediate in the overall hydrolysis.  相似文献   

19.
The pH-dependence of class B and class C beta-lactamases.   总被引:5,自引:4,他引:1       下载免费PDF全文
The classification by structure allots beta-lactamases to (at present) three classes, A, B and C. The pH-dependence of the kinetic parameters for class B and class C have been determined. They differ from each other and from class A beta-lactamases. The class B enzyme was beta-lactamase II from Bacillus cereus 569/H/9. The plots of kcat against pH for the hydrolysis of benzylpenicillin by Zn(II)-requiring beta-lactamase II and Co(II)-requiring beta-lactamase II were not symmetrical, but those of kcat/Km were. A similar feature was observed for the hydrolysis of both benzylpenicillin and cephalosporin C by a class C beta-lactamase from Pseudomonas aeruginosa. The results have been interpreted by a scheme in which two ionic forms of an intermediate can give product, but do so at differing rates.  相似文献   

20.
Cefoxitin was a very poor substrate for the beta-lactamase of Streptomyces cacaoi (kcat = 2.7 x 10(-4) s-1). In the presence of nitrocefin, a good substrate, cefoxitin behaved as a transient inactivator by immobilizing a large proportion of the enzyme as the acyl enzyme intermediate. The enzyme was also inactivated by beta-iodopenicillanate. In this case, the acyl enzyme rearranged into an alpha-beta unsaturated ester and inactivation was irreversible. In contrast to the situation prevailing with the Streptomyces albus G beta-lactamase, no turn-over of beta-iodopenicillanate was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号