首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The key to plant survival under NaCl salt stress is maintaining a low Na+ level or Na+/K+ ratio in the cells. A population of recombinant inbred lines (RILs, F2∶9) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na+ and K+ concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na+ in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na+ in shoots (SNC), four additive QTLs identified for K+ in roots (RKC), four additive QTLs and three epistatic QTLs identified for K+ in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.  相似文献   

2.
A major locus for submergence tolerance mapped on rice chromosome 9   总被引:18,自引:0,他引:18  
Submergence stress is a widespread problem in rice-growing environments where drainage is impeded. A few cultivars can tolerate more than 10 days of submergence, but the genes conferring this tolerance have not been identified. We used randon-amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers to map submergence tolerance in 169 F2 plants and the resulting F3 families of a cross between a tolerant indica rice line, IR40931-26, and a susceptible japonica line, PI543851. IR40931-26 inherited strong submergence tolerance from the unimproved cultivar FR13A. Eight-day old F3 seedlings were submerged for 14–16 days in 55-cm deep tanks, and tolerance was scored after 7 days recovery on a scale of 1 (tolerant) to 9 (susceptible). The tolerant and susceptible parents scored 1.5 and 8.4, respectively, and the F3 means ranged from 1.6 to 8.9. Two bulks were formed with DNA from F2 plants corresponding to the nine most tolerant and the nine most susceptible F3 families. Of 624 RAPD primers used to screen the bulks, five produced bands associated with either tolerance or susceptibility. These markers were mapped to a region of chromosome 9 by linkage to RFLP markers. A submergence tolerance quantitative trait locus (QTL), here designatedSub1, was located ca. 4 cM from the RFLP marker C1232 and accounted for 69% of the phenotypic variance for the trait.  相似文献   

3.
 Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated using an interspecific backcross between a salt-sensitive Lycopersicon esculentum breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). One hundred and nineteen BC1 individuals were genotyped for 151 RFLP markers and a linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for salt tolerance in aerated saline-solution cultures with the salt concentration gradually raised to 700 mM NaCl+70 mM CaCl2 (equivalent to an electrical conductivity of approximately 64 dS/m and a water potential of approximately −35.2 bars). The two parental lines were distinctly different in salt tolerance: 80% of the LA722 plants versus 25% of the NC84173 plants survived for at least 2 weeks after the final salt concentration was reached. The BC1S1 population exhibited a continuous variation, typical of quantitative traits, with the survival rate of the BC1S1 families ranging from 9% to 94% with a mean of 51%. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-marker analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and five QTLs were identified on chromosomes 1 (two QTLs), 3, 5 and 9. Each QTL accounted for between 5.7% and 17.7%, with the combined effects (of all five QTLs) exceeding 46%, of the total phenotypic variation. All QTLs had the positive QTL alleles from the salt-tolerant parent. Across QTLs, the effects were mainly additive in nature. Digenic epistatic interactions were evident among several QTL-linked and QTL-unlinked markers. The overall results indicate that tomato salt tolerance during the vegetative stage could be improved by marker-assisted selection using interspecific variation. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

4.
玉米株高和穗位高遗传基础的QTL剖析   总被引:13,自引:0,他引:13  
兰进好  褚栋 《遗传》2005,27(6):925-934
利用玉米强优势组合(Mo17×黄早四)自交衍生的191个F2单株构建了由SSR和AFLP标记组成的分子连锁图谱.F2进一步自交产生的184个F2:3家系用于调查株高和穗位高的表型值.采用基于混合线性模型的复合区间作图法和相应的作图软件QTLmapper/V2.0,分别定位了7个株高和6个穗位高QTL;检测到18对控制株高和13对控制穗位高的上位性效应位点;同时发现了与环境存在显著互作的6个株高和8个穗位高单位点标记区域以及4对株高和4对穗位高上位性效应区域.分析了各种遗传因素在株高和穗位高遗传基础中的相对作用大小,指出了加性、显性和上位性是玉米株高和穗位高的重要遗传基础.并对所定位的QTL的真实性、株高和穗位高的关系以及研究结果对分子育种的启示予以讨论.  相似文献   

5.
An F2 population, consisting of 231 individuals derived from a cross between rice cultivars with a similar growing duration, Palawan and IR42, was utilized to investigate the genetic nature of rice varietal ability to stimulate N2 fixation in the rice rhizosphere. To assess rhizospheric N2 fixation, an isotope-enriched 15N dilution technique was employed, using 15N-stabilized soil in pots. IR42, an indica variety, had 23% higher N derived from fixation (Ndfa) than Palawan, a javanica genotype. Normal segregation of atom% 15N excess was obtained in the F2 population, with an average of 0.218 with 8% of plants below IR42 (0.188) and 10% of plants above Palawan (0.248). One-hundred-and-four RFLP markers mapped on 12 chromosomes were tested for linkage to the putative QTLs. Significant (P<0.01) associations between markers and segregation of atom% 15N excess were observed for seven marker loci located on chromosomes 1, 3, 6 and 11. Four QTLs defined by the detected marker loci were identified by interval-mapping analysis. Additive gene action was found to be predominant, but for at least one locus, dominance and partial dominance effects were observed. Significant (P<0.01) epistatic effects were also identified. Individual marker loci detected between 8 and 16% of the total phenotypic variation. All four putative QTLs showed recessive gene action, and no phenotypic effects associated with heterozygosity of marker loci were observed. The results of this study suggest that rice genetic factors can be identified which affect levels of atom% 15N excess in the soil by interacting with diazotrophs in the rice rhizosphere.  相似文献   

6.
Appropriate heading date and plant height are prerequisites for attaining the desired yield level in rice breeding programs. In this study, we analyzed the genetic bases of heading date and plant height at both single- locus and two-locus levels, using a population of 240 F2:3 families derived from a cross between two elite rice lines. Measurements for the traits were obtained over 2 years in replicated field trials. A linkage map was constructed with 151 polymorphic marker loci, based on which interval mapping was performed using Mapmaker/QTL. The analyses detected six QTLs for plant height and six QTLs for heading date; collectively the QTLs for heading date accounted for a much greater amount of phenotypic variation than did the QTLs for plant height. Two-way analyses of variance, with all possible two-locus combinations, detected large numbers (from 101 to 257) of significant digenic interactions in the 2 years for both traits involving markers distributed in the entire genome; 22 and 39 were simultaneously detected in both years for plant height and heading date, respectively. Each of the interactions individually accounted for only a very small portion of the phenotypic variation. The majority of the significant interactions involved marker loci that did not detect significant effects by single-locus analyses, and many of the QTLs detected by single-locus analyses were involved in epistatic interactions. The results clearly demonstrated the importance of epistatic interactions in the genetic bases of heading date and plant height. Received: 5 May 2001 / Accepted: 3 August 2001  相似文献   

7.
Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.  相似文献   

8.
The Chilean annual,Microseris pygmaea, has differentiated in distinct coastal and inland series of populations after long-distance dispersal from western North America. Two plants from the most diverse biotypes were crossed, a large F2 was raised and analysed for segregation of 30 phenotypic characters. Segregation of molecular markers (47 RAPDs, 1 RFLP, 2 isozymes) was determined in a subpopulation of 45 plants which include all extremes for the phenotypic characters. 32 marker/character cosegregations were significant at the 1% level in t-tests between dominant and homozygous recessive marker genotypes. Considering linkage among markers and pleiotropy of certain marker loci, the number of independent quantitative trait loci (QTLs) is reduced to about 18. Interactions among 2 or 3 QTLs affecting one character have been characterized. The phenotypic differentiation ofM. pygmaea during its evolution from a single founder individual begins to be understood at the level of single-gene mutants.  相似文献   

9.
 We mapped and characterized quantitative trait loci (QTLs) for resistance to Ustilago maydis and investigated their consistency across different flint-maize populations. Four independent populations, comprising 280 F3 lines (A×BI), 120 F5 lines (A×BII), 131 F4 lines (A×C) and 133 F4 lines (C×D), were produced from four European elite flint inbreds (A, B, C, D) and genotyped at 89, 151, 104, and 122 RFLP marker loci, respectively. All Fn lines were evaluated in field trials with two replications in five German environments. Genotypic variances were highly significant for the percentage of U. maydis infected plants (UST) in all populations, and heritabilities exceeded 0.69. Between five and ten QTLs were detected in individual populations by composite interval mapping, explaining between 39% and 58% of the phenotypic variance. These 19 different QTLs were distributed over all ten chromosomes without any clustering on certain chromosomes. In most cases, gene action was dominant or overdominant. Fourteen pairs of the detected QTLs for UST displayed significant digenic epistatic interactions, but only two of them did so after arcsin √UST/100 transformation. Significant QTL× environment interactions occurred frequently. Between two to four QTLs were common between pairs of populations. Population C×D was also grown in Chartres, a location with a high U. maydis incidence. Two out of six QTLs identified for Chartres were in common with QTLs detected across five German environments for C×D. Consequently, marker-assisted or phenotypic selection based on results from natural infection seem to be suitable breeding strategies for improving the resistance of maize to U. maydis. Received: 3 July 1998 / Accepted: 24 July 1998  相似文献   

10.
 Abscisic acid (ABA) concentration in leaves of drought-stressed plants is a quantitatively inherited trait. In order to identify quantitative trait loci (QTLs) controlling leaf ABA concentration (L-ABA) in maize, leaf samples were collected from 80 F3:4 families of the cross Os420 (high L-ABA)×IABO78 (low L-ABA) tested under drought conditions in field trials conducted over 2 years. In each year, leaf samples were collected at stem elongation and near anthesis. The genetic map obtained with 106 restriction fragment length polymorphism (RFLP) loci covered 1370 cM, which represented approximately 85% of the UMC maize map. Sixteen different QTLs with a LOD>2.0 were revealed in at least one sampling. Across samplings, only four QTLs significantly influenced L-ABA, accounting for 66% of the phenotypic variation and 76% of the genetic variation among families. At these QTLs, the alleles which increased L-ABA were contributed by Os420. The two most important QTLs were mapped on chromosome 2 near csu133 and csu109a. The effects associated with the QTL near csu133 were more pronounced near anthesis. The support intervals of the four primary QTLs for L-ABA did not overlap the presumed map position of mutants impaired in ABA biosynthesis. Received: 27 January 1998 / Accepted: 22 April 1998  相似文献   

11.
To study the resistance of pepper to Phytophthora capsici, we analyzed 94 doubled-haploid (DH) lines derived from the intraspecific F1 hybrid obtained from a cross between Perennial, an Indian pungent resistant line, and Yolo Wonder, an American bell-pepper susceptible line, with 119 DNA markers. Four different criteria were used to evaluate the resistance, corresponding to different steps or mechanisms of the host-pathogen interaction: root-rot index, receptivity, inducibility and stability. Three distinct ANOVA models between DNA marker genotypes and the four disease criteria identified 13 genomic regions, distributed across several linkage groups or unlinked markers, affecting the resistance of pepper to P. capsici. Some QTLs were criterion specific, whereas others affect several criteria, so that the four resistance criteria were controlled by different combinations of QTLs. The QTLs were very different in their quantitative effect (R2 values), including major QTLs which explained 41–55% of the phenotypic variance, intermediate QTLs with additive or/and epistatic action (17–28% of the variance explained) and minor QTLs. Favourable alleles of some minor QTLs were carried in the susceptible parent. The total phenotypic variation accounted for by QTLs reached up to 90% for receptivity, with an important part due to epistasis effects between QTLs (with or without additive effects). The relative impact of resistance QTLs in disease response is discussed.  相似文献   

12.
Variation in tolerance in chilling-dependent photoinhibition has been associated with a wide range of traits in comparative physiological studies. A sweet corn (Zea mays L.) population of 214 F2:3 families previously mapped to near-saturation with 93 RFLP DNA markers were subjected to low temperature and high-light events prior to measurement of the maximum dark-adapted quantum efficiency of PS II (Fv/Fm), to identify loci associated with variation in chilling-dependent photoinhibition. In the first assay with ten families varying in seedling growth and germination, significant differences were observed among families in their response to and recovery from exposure to high light at low temperature. All the 214 F2:3 families from this population were then evaluated for tolerance of chilling-dependent photoinhibition in a controlled environment and then in three replicated trials in the field, each following naturally occurring chilling events during spring. The measured effects on Fv/Fm were analyzed with software that mapped segregating loci that regulate trait expression and linked to genetic markers (PLABQTL). QTL 3.096 (i.e. 96 cM on chromosome three) was consistently identified in both controlled environment and in the mean of the three field trails. Another QTL at 8.025, described the greatest percentage of total phenotypic variance (ca. 10%) for the mean reduction in Fv/Fm of all three periods of measurement in the field. A third QTL (4.136) showed a highly significant association in the third field trial. These three QTLs were closely associated with genes that have been mechanistically related to photoinhibition tolerance and repair. The results suggest that the ratio of Fv/Fm is an approach that may be used in establishing marker-assisted breeding for improved tolerance to chilling of maize in the light and in turn better early-season growth in cool temperate climates.  相似文献   

13.

Background

The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast.

Methodology

A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait.

Results

Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population.

Conclusions

This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.  相似文献   

14.
To investigate the genetic background for aluminum (Al) tolerance in rice, a recombinant inbred (RI) population, derived from a cross between an Al-sensitive lowland indica rice variety IR1552 and an Al-tolerant upland japonica rice variety Azucena, was used in culture solution. A molecular linkage map, together with 104 amplified fragment length polymorphism (AFLP) markers and 103 restriction fragment length polymorphism (RFLP) markers, was constructed to map quantitative trait loci (QTLs) and epistatic loci for Al tolerance based on the segregation for relative root length (RRL) in the population. RRL was measured after stress for 2 and 4 weeks at a concentration of 1mM of Al3+ and a control with a pH 4.0, respectively. Two QTLs were detected at both the 2nd and the 4th weeks on chromosomes 1 and 12 from unconditional mapping, while the QTL on chromosome 1 was only detected at the 2nd stress week from conditional mapping. The effect of the QTL on chromosome 12 was increased with an increase of the stress period from 2 to 4 weeks. The QTL on chromosome 1 was expressed only at the earlier stress, but its contribution to tolerance was prolonged during growth. At least one different QTL was detected at the different stress periods. Mean comparisons between marker genotypic classes indicated that the positive alleles at the QTLs were from the Al-tolerant upland rice Azucena. An important heterozygous non-allelic interaction on Al tolerance was found. The results indicated that tolerance in the younger seedlings was predominantly controlled by an additive effect, while an epistatic effect was more important to the tolerance in older seedlings; additionally the detected QTLs may be multiple allelic loci for Al tolerance and phosphorus-uptake efficiency, or for Al and Fe2+ tolerance. Received: 29 July 1999 / Accepted: 13 October 1999  相似文献   

15.
A study was initiated to determine the number, chromosomal location, and magnitude of effect of QTL (quantitative trait loci or locus depending on context) controlling protein and starch concentration in the maize (Zea mays L.) kernel. Restriction fragment length polymorphism (RFLP) analysis was performed on 100 F3 families derived from a cross of two strains, Illinois High Protein (IHP), X Illinois Low Protein (ILP), which had been divergently selected for protein concentration for 76 generations as part of the Illinois Long Term Selection Experiment. These families were analyzed for kernel protein and starch in replicated field trials during 1990 and 1991. A series of 90 genomic and cDNA clones distributed throughout the maize genome were chosen for their ability to detect RFLP between IHP and ILP. These clones were hybridized with DNA extracted from the 100 F3 families, revealing 100 polymorphic loci. Single factor analysis of variance revealed significant QTL associations of many loci with both protein and starch concentration (P < 0.05 level). Twenty-two loci distributed on 10 chromosome arms were significantly associated with protein concentration, 19 loci on 9 chromosome arms were significantly associated with starch concentration. Sixteen of these loci were significant for both protein and starch concentration. Clusters of 3 or more significant loci were detected on chromosome arms 3L, 5S, and 7L for protein concentration, suggesting the presence of QTL with large effects at these locations. A QTL with large additive effects on protein and starch concentration was detected on chromosome arm 3L. RFLP alleles at this QTL were found to be linked with RFLP alleles at the Shrunken-2 (Sh2) locus, a structural gene encoding the major subunit of the starch synthetic enzyme ADP-glucose pyrophosphorylase. A multiple linear regression model consisting of 6 significant RFLP loci on different chromosomes explained over 64 % of the total variation for kernel protein concentration. Similar results were detected for starch concentration. Thus, several chromosomal regions with large effects may be responsible for a significant portion of the changes in kernel protein and starch concentration in the Illinois Long Term Selection Experiment.  相似文献   

16.
QTL analysis of potato tuber dormancy   总被引:5,自引:1,他引:4  
The potential loss of chemical sprout inhibitors because of public concern over the use of pesticides underscores the desirability of breeding for long dormancy of potato (Solanum tuberosum L.) tubers. Quantitative trait locus (QTL) analyses were performed in reciprocal backcrosses between S. tuberosum and S. berthaultii toward defining the complexity of dormancy. S. berthaultii is a wild Bolivian species characterized by a short-day requirement for tuberization, long tuber dormancy, and resistance to several insect pests. RFLP alleles segregating from the recurrent parents as well as from the interspecific hybrid were monitored in two segregating progenies. We detected QTLs on nine chromosomes that affected tuber dormancy, either alone or through epistatic interactions. Alleles from the wild parent promoted dormancy, with the largest effect at a QTL on chromosome 2. Long dormancy appeared to be recessive in the backcross to S. berthaultii (BCB). In BCB the additive effects of dormancy QTLs accounted for 48% of the measured phenotypic variance, and adding epistatic effects to the model explained only 4% more. In contrast, additive effects explained only 16% of the variance in the backcross to S. tuberosum (BCT), and an additional 24% was explained by the inclusion of epistatic effects. In BCB variation at all QTLs detected was associated with RFLP alleles segregating from the hybrid parent; in BCT all QTLs except for two found through epistasis were detected through RFLP alleles segregating from the recurrent parent. At least three dormancy QTLs mapped to markers previously found to be associated with tuberization in these crosses.Paper number 55 of the Department of Fruit and Vegetable Science, Cornell University  相似文献   

17.
Sorghum downy mildew (SDM), caused by obligate biotrophic fungi Peronosclerospora sorghi, is an economically important disease of maize. The genetics of resistance was reported to be polygenic thereby necessitating identification of QTLs for resistance to SDM to initiate effective marker-assisted selection programs. During post-rainy and winter season of 2012, 645 F2:3 progeny families from the cross CML153 (susceptible) × CML226 (resistant) were screened for their reaction to SDM. Characterization of QTLs affecting resistance to SDM was undertaken using the genetic linkage map with 319 polymorphic SSR and SNP marker loci and the phenotypic data of F2:3 families. Three QTLs conferring resistance to SDM were consistently identified on chromosomes 2, 3 and 6 in both seasons. The resistant parent CML226 contributed all the QTL alleles conferring resistance to SDM. The major QTL located on chromosome 2 explained 38.68% of total phenotypic variation in the combined analysis with a LOD score of 9.12. All the three QTL showed partially dominant gene effects in combined analysis. The detection of more than one QTL supports the hypothesis that quantitative genes control resistance to P. sorghi. The generation was advanced to F6 using markers linked to major QTLs on chromosomes 2 and 3 to derive 33 SDM resistant maize inbred lines.  相似文献   

18.
Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid ‘Xinza No. 1’. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton.  相似文献   

19.
Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F2population of 234 individuals was genotyped at 142 loci and F3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative quantitative trait loci (QTLs) involved in the expression of MFLW and/or FFLW under drought were detected on chromosomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromosomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW, and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines.  相似文献   

20.
Breeding maize for gray leaf spot (GLS) resistance has been hindered by the quantitative nature of the inheritance of GLS resistance and by the limitations of selection under less than optimumal disease pressure. In order to identify the quantitative trait loci (QTLs) controlling GLS resistance, a cross was made between B73 (susceptible) and Va14 (resistant) to generate a large F2 population. Six GLS disease assessments were made throughout the disease season for over 1000 F2 plants in 1989, and for 600 F2-derived F3 lines replicated in two blocks in 1990. RFLP analysis for78 marker loci representing all ten maize chromosomes was conducted in 239 F2 individuals including those with the extreme GLS disease phenotypes. The GLS disease scores of the three field evaluations, each averaged over six ratings, were separately used for the interval mapping in order to determine the consistency of the QTL effects. The heavy GLS disease pressure, meticulous disease ratings, and large population size of this study afforded us the sensitivity for detecting QTL effects. QTLs located on three chromosomes (1, 4, and 8) had large effects on GLS resistance, each explaining 35.0–56.0%, 8.8–14.3%, and 7.7–11.0% of the variance, respectively. These three QTL effects were remarkably consistent across three disease evaluations over 2 years and two generations. Smaller QTL effects were also found on chromosomes 2 and 5, but the chromosome-5 effect might be a false positive because it was not repeatable even in the same location. The chromosome-1 QTLs had the largest effect or highest R2 reported for any quantitative trait to-date. Except for the chromosome-4 gene, which was from the susceptible parent B73, the resistance alleles at all QTL were derived from Va14. The resistance QTLs on chromosomes 1 and 2 appear to have additive effects, but those on chromosomes 4 and 8 are dominant and recessive, respectively. Significant interaction between the QTLs on chromosomes 1 and 4 was detected in all three evaluations. Cumulatively, the four QTLs identified in this study explained 44, 60, and 68% of the variance in F2, and in F3 replications 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号