共查询到20条相似文献,搜索用时 15 毫秒
1.
Justin C. Biffinger Ricky Ray Brenda J. Little Lisa A. Fitzgerald Meghann Ribbens Steven E. Finkel Bradley R. Ringeisen 《Biotechnology and bioengineering》2009,103(3):524-531
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high‐throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR‐1 to carbon source (glucose or lactate) utilization, culture conditions, and biofilm coverage over 250 h. Lactate induced an immediate current response from S. oneidensis MR‐1, with both air‐exposed and anaerobic anodes throughout the duration of the experiments. Glucose was initially utilized for current output by MR‐1 when cultured and maintained in the presence of air. However, after repeated additions of glucose, the current output from the MFC decreased substantially while viable planktonic cell counts and biofilm coverage remained constant suggesting that extracellular electron transfer pathways were being inhibited. Shewanella maintained under an anaerobic atmosphere did not utilize glucose consistent with literature precedents. Operation of the VBSA permitted data collection from nine simultaneous S. oneidensis MR‐1 MFC experiments in which each experiment was able to demonstrate organic carbon source utilization and oxygen dependent biofilm formation on a carbon electrode. These data provide the first direct evidence of complex cellular responses to electron donor and oxygen tension by Shewanella in an operating MFC at select time points. Biotechnol. Bioeng. 2009;103: 524–531. Published 2009 Wiley Periodicals, Inc. 相似文献
2.
Miriam Rosenbaum Michael A. Cotta Largus T. Angenent 《Biotechnology and bioengineering》2010,105(5):880-888
We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell (MFC). The potentiostatic performance of aerated S. oneidensis was considerably enhanced to a maximum current density of 0.45 A/m2 or 80.3 A/m3 (mean: 0.34 A/m2, 57.2 A/m3) compared to anaerobically grown cultures. Biocatalyzed hydrogen production rates with aerated S. oneidensis were studied within the applied potential range of 0.3–0.9 V and were highest at 0.9 V with 0.3 m3 H2/m3 day, which has been reported for mixed cultures, but is ~10 times higher than reported for an anaerobic culture of S. oneidensis. Aerated MFC experiments produced a maximum power density of 3.56 W/m3 at a 200‐Ω external resistor. The main reasons for enhanced electrochemical performance are higher levels of active biomass and more efficient substrate utilization under aerobic conditions. Coulombic efficiencies, however, were greatly reduced due to losses of reducing equivalents to aerobic respiration in the anode chamber. The next challenge will be to optimize the aeration rate of the bacterial culture to balance between maximization of bacterial activation and minimization of aerobic respiration in the culture. Biotechnol. Bioeng. 2010;105: 880–888. © 2009 Wiley Periodicals, Inc. 相似文献
3.
Rebecca E. Cooper 《Geomicrobiology journal》2019,36(7):639-650
Shewanella oneidensis respires a variety of terminal electron acceptors, including solid phase Fe(III) oxides. S. oneidensis transfers electrons to Fe(III) oxides via direct (outer membrane- or nanowire-localized c-type cytochromes) and indirect (electron shuttling and Fe(III) solubilization) pathways. In the present study, the influence of anaerobic biofilm formation on Fe(III) oxide reduction by S. oneidensis was determined. The gene encoding the activated methyl cycle (AMC) enzyme S-ribosylhomocysteine lyase (LuxS) was deleted in-frame to generate the corresponding mutant ΔluxS. Conventional biofilm assays and visual inspection via confocal laser scanning microscopy indicated that the wild-type strain formed anaerobic biofilms on Fe(III) oxide-coated silica surfaces, while the ΔluxS mutant was severely impaired in anaerobic biofilm formation on such surfaces. Cell-hematite attachment isotherms demonstrated that the ΔluxS mutant was also severely impaired in attachment to hematite surfaces under anaerobic conditions. The S. oneidensis ΔluxS mutant, however, reduced Fe(III) at wild-type rates during anaerobic incubation with Fe(III) oxide-coated silica surfaces or in batch cultures with Fe(III) oxide or hematite as a terminal electron acceptor. Anaerobic biofilm formation by the ΔluxS mutant was restored to wild-type rates by providing a wild-type copy of luxS in trans or by the addition of AMC or transsulfurylation pathway metabolites involved in organic sulfur metabolism. LuxS is thus required for wild-type anaerobic biofilm formation on Fe(III) oxide surfaces, yet the inability to form wild-type anaerobic biofilms on Fe(III) oxide surfaces does not alter Fe(III) oxide reduction activity. 相似文献
4.
Corrosion is a natural global problem of immense importance. Oxidation of iron and steel not only compromises the structural stability of a widely used and versatile material but it also creates an abrasive compound (iron oxide) that can score the surfaces of metals, rendering them useless for the purpose for which they were designed. Clearly, the identification of corrosion in its nascent stages is a high priority for reasons that range from aesthetics to economics. Many bacteria in the facultatively aerobic genus Shewanella have the capacity to respire some metal oxides, such as iron oxide, by way of a variety of oxide-binding proteins lodged in their outer membrane. In this study, a rapid, cost-effective system for the specific early detection of a variety of oxidized steel surfaces is described, taking advantage of bacteria with natural affinities for iron oxides, to identify the sites of nascent corrosion. 相似文献
5.
6.
7.
8.
Power densities and oxidation–reduction potentials (ORPs) of MFCs containing a pure culture of Shewanella oneidensis MR‐1 were compared to mixed cultures (wastewater inoculum) in cube shaped, 1‐, 2‐, and 3‐bottle batch‐fed MFC reactor configurations. The reactor architecture influenced the relative power produced by the different inocula, with the mixed culture generating 68–480% more power than MR‐1 in each MFC configuration. The mixed culture produced the maximum power density of 858 ± 9 mW m?2 in the cubic MFC, while MR‐1 produced 148 ± 20 mW m?2. The higher power by the mixed culture was primarily a result of lower internal resistances than those produced by the pure culture. Power was a direct function of ohmic resistance for the mixed culture, but not for strain MR‐1. ORP of the anode compartment varied with reactor configuration and inoculum, and it was always negative during maximum power production but it did not vary in proportion to power output. The ORP varied primarily at the end of the cycle when substrate was depleted, with a change from a reductive environment during maximum power production (approximately ?175 mV for mixed and approximately ?210 mV for MR‐1 in cubic MFCs), to an oxidative environment at the end of the batch cycle (~250 mV for mixed and ~300 mV for MR‐1). Mixed cultures produced more power than MR‐1 MFCs even though their redox potential was less negative. These results demonstrate that differences between power densities produced by pure and mixed cultures depend on the MFC architecture. Biotechnol. Bioeng. 2010; 105: 489–498. © 2009 Wiley Periodicals, Inc. 相似文献
9.
10.
The removal of nitrilotriacetic acid (NTA) was studied under anaerobic conditions using oligotrophic and copiotrophic microbial fuel cells (MFCs) as a novel wastewater treatment process. Over 85% of NTA was removed from oligotrophic MFCs enriched and maintained with fuel containing NTA, whilst the value was around 20% in oligotrophic MFCs fed with NTA-free fuel, and in copiotrophic MFCs enriched with NTA containing fuel. The oligotrophic MFCs generated current with concomitant utilization of NTA when served as the sole organic compound, suggesting that NTA is oxidized its suitability as fuel in the MFCs. 相似文献
11.
Biofilms formation capacities of Shewanella species in microbial fuel cells (MFCs) and their roles in current generation have been documented to be species-dependent. Understandings of the biofilms growth and metabolism are essential to optimize the current generation of MFCs. Shewanella decolorationis S12 was used in both closed-circuit and open-circuit MFCs in this study. The anodic S. decolorationis S12 biofilms could generate fivefold more current than the planktonic cells, playing a dominant role in current generation. Anodic biofilms viability was sustained at 98 ± 1.2% in closed-circuit while biofilms viability in open-circuit decreased to 72 ± 7% within 96 h. The unviable domain in open-circuit MFCs biofilms majorly located at the inner layer of biofilm. The decreased biofilms viability in open-circuit MFCs could be recovered by switching into closed-circuit, indicating that the current-generating anode in MFCs could serve as a favorable electron acceptor and provide sufficient energy to support cell growth and metabolism inside biofilms. 相似文献
12.
Bacterial community structure, compartmentalization and activity in a microbial fuel cell 总被引:5,自引:0,他引:5
Kim GT Webster G Wimpenny JW Kim BH Kim HJ Weightman AJ 《Journal of applied microbiology》2006,101(3):698-710
AIMS: To characterize bacterial populations and their activities within a microbial fuel cell (MFC), using cultivation-independent and cultivation approaches. METHODS AND RESULTS: Electron microscopic observations showed that the fuel cell electrode had a microbial biofilm attached to its surface with loosely associated microbial clumps. Bacterial 16S rRNA gene libraries were constructed and analysed from each of four compartments within the fuel cell: the planktonic community; the membrane biofilm; bacterial clumps (BC) and the anode biofilm. Results showed that the bacterial community structure varied significantly between these compartments. It was observed that Gammaproteobacteria phylotypes were present at higher numbers within libraries from the BC and electrode biofilm compared with other parts of the fuel cell. Community structure of the MFC determined by analyses of bacterial 16S rRNA gene libraries and anaerobic cultivation showed excellent agreement with community profiles from denaturing gradient gel electrophoresis (DGGE) analysis. CONCLUSIONS: Members of the family Enterobacteriaceae, such as Klebsiella sp. and Enterobacter sp. and other Gammaproteobacteria with Fe(III)-reducing and electrochemical activity had a significant potential for energy generation in this system. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has shown that electrochemically active bacteria can be enriched using an electrochemical fuel cell. 相似文献
13.
【目的】Shewanella oneidensis MR-1是电活性模式微生物,但目前仍缺乏对其细胞及生物膜形貌变化的系统研究,本研究旨在完善对其形貌特征的理解,为支持其作为模式微生物提供有力的基础数据。【方法】选取培养基类型、缓冲液浓度、维生素、微量元素、无机盐、电子穿梭体、电子供体、电子受体等培养条件作为变量,采用恒电位培养法获得生物膜,通过扫描电子显微镜对生物膜形貌进行观察。【结果】低浓度缓冲液中(30 mmol/L和100 mmol/L),其细胞多为短杆状,高浓度缓冲液中(200 mmol/L和300 mmol/L)细胞卷曲伸长;缺乏维生素、微量元素、无机盐则可使生物膜紧贴电极生长,变得致密;而穿梭体和电子受体对于S. oneidensis MR-1极为关键,前者的存在可显著促进生物膜的厚度,后者的缺失可迫使生物膜细胞裂解;此外,通过形貌研究发现,S. oneidensis MR-1可首尾相连形成超过100μm的长线状结构。【结论】可通过改变缓冲液浓度、培养基类型、电子穿梭体和电子供受体等变量,实现Shewanella oneidensis MR-1电极生物膜及细胞形貌的调控。 相似文献
14.
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process. 相似文献
15.
Ramaraja P. Ramasamy Venkataramana Gadhamshetty Lloyd J. Nadeau Glenn R. Johnson 《Biotechnology and bioengineering》2009,104(5):882-891
Endogenously produced, diffusible redox mediators can act as electron shuttles for bacterial respiration. Accordingly, the mediators also serve a critical role in microbial fuel cells (MFCs), as they assist extracellular electron transfer from the bacteria to the anode serving as the intermediate electron sink. Electrochemical impedance spectroscopy (EIS) may be a valuable tool for evaluating the role of mediators in an operating MFC. EIS offers distinct advantages over some conventional analytical methods for the investigation of MFC systems because EIS can elucidate the electrochemical properties of various charge transfer processes in the bio‐energetic pathway. Preliminary investigations of Shewanella oneidensis DSP10‐based MFCs revealved that even low quantities of extracellular mediators significantly influence the impedance behavior of MFCs. EIS results also suggested that for the model MFC studied, electron transfer from the mediator to the anode may be up to 15 times faster than the electron transfer from bacteria to the mediator. When a simple carbonate membrane separated the anode and cathode chambers, the extracellular mediators were also detected at the cathode, indicating diffusion from the anode under open circuit conditions. The findings demonstrated that EIS can be used as a tool to indicate presence of extracellular redox mediators produced by microorganisms and their participation in extracellular electron shuttling. Biotechnol. Bioeng. 2009; 104: 882–891. © 2009 Wiley Periodicals, Inc. 相似文献
16.
Lemuel B. Wingard Ching Hao Shaw James F. Castner 《Enzyme and microbial technology》1982,4(3):137-142
In the past 20 years, inorganic fuel cells have been transformed from novelty devices to practical energy transfer-energy storage units. However, the advantage of the high operating efficiency afforded by these fuel cells is partially offset by (a) the limited viability and high cost of the catalysts, (b) the highly corrosive electrolytes, and (c) the elevated operating temperatures. The possibility exists to reduce some of these problems through the development of bioelectrochemical fuel cells. Such biological/electrochemical systems incorporate either microorganisms or enzymes as an active component within the specified electrode compartments. Recent studies with microorganisms as part of the anode compartment have been aimed at defining the mechanism of the observed electrochemical reactions. Recent investigations on the use of cell-free enzyme preparations in the electrode compartments have dealt primarily with developing methodology and defining mechanisms for enhancing the rate of electron transfer from the enzyme-cofactor active site to the solid electrode surface. Applications of this developing technology have been envisioned for analytical chemistry, medical devices, energy transfer, electrochemical synthesis, and detoxification. In this review, the theory and problems of bioelectrochemical fuel cells are described and related to research, both recent and proposed, for the practical development of this area. 相似文献
17.
Yang-Chun Yong Zhi-Hong Liao Jian-Zhong Sun Tao Zheng Rong-Rong Jiang Hao Song 《Process Biochemistry》2013,48(12):1947-1951
Coulombic efficiency and stability of electricity output are crucial for practical applications of microbial fuel cells (MFCs). In this study, a cell immobilization method for electrogenic microorganism in MFCs using graphite/alginate granules is developed. The MFC with immobilized cell granules delivered a much more stable electricity output than that with suspension cells, and resulted in a ~0.8 to 1.7 times improvement on coulombic efficiency compared to the suspension mode. Impressively, with the conductive graphite/alginate/cells granules, the internal resistance of the MFC decreased dramatically. Moreover, the cell immobilized MFC showed a much higher tolerance to the shock of high salt concentration than the MFC with suspension cells. The results substantiated that immobilization of electrogenic microorganism for MFCs could be achieved by the method developed here, and it is promising for practical application in energy harvesting from wastewater by MFCs. 相似文献
18.
Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells 总被引:1,自引:0,他引:1
Pentose and humic acids (HA) are the main components of hydrolysates, the liquid fraction produced during thermohydrolysis of lignocellulosic material. Electricity generation integrated with xylose (typical pentose) degradation as well as the effect of HA on electricity production in microbial fuel cells (MFCs) was examined. Without HA addition the maximum power density increased from 39.5 mW/m(2) to 83 mW/m(2) when initial xylose concentrations increased from 1.5 to 30 mM, while coulombic efficiency ranged from 13.5% to 52.4% for xylose concentrations of 15 and 0.5 mM, respectively. Compared to controls where HAs were not added, addition of commercial HA resulted in increase of power density and coulombic efficiency, which ranged from 7.5% to 67.4% and 24% to 92.6%, respectively. Digested manure wastewater (DMW) was tested as potential mediator for power generation due to its content of natural HA, and although it could produce higher coulombic efficiency namely 32.2% than the control of 18.3%, showed lower power density which was approx. 57 mW/m(2) in comparison to power density of the control which was 69 mW/m(2). Presence of commercial HA or DMW in the anode chamber resulted in faster xylose degradation and formation of more oxidized products (acetate and formate) as well as less reduced products (lactate and ethanol) compared to the controls. The reduced power generation in the presence of DMW was attributed to the presence of bacterial inhibitors such as phenolic compounds. Therefore, new feedstocks for MFCs, containing both mediators and substrates, such as lignocellulose hydrolysates should be considered for their applicability in MFCs. 相似文献
19.
Lyne Woodward Boris Tartakovsky Michel Perrier Bala Srinivasan 《Biotechnology progress》2009,25(3):676-682
This study demonstrates real‐time maximization of power production in a stack of two continuous flow microbial fuel cells (MFCs). To maximize power output, external resistances of two air–cathode membraneless MFCs were controlled by a multiunit optimization algorithm. Multiunit optimization is a recently proposed method that uses multiple similar units to optimize process performance. The experiment demonstrated fast convergence toward optimal external resistance and algorithm stability during external perturbations (e.g., temperature variations). Rate of the algorithm convergence was much faster than in traditional maximum power point tracking algorithms (MPPT), which are based on temporal perturbations. A power output of 81–84 mW/LA (A = anode volume) was achieved in each MFC. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
20.
A series of fiber electrodes with fiber diameters ranging from about 10 to 0.1 μm were tested as anodes in microbial fuel cells to study the effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes. A simple method of biofilm fixation and dehydration was developed for biofilm morphology characterization. Results showed that the current density of fiber anodes increased until the fiber diameter approached 1 μm which was about the length of the dominant microorganisms in biofilm. The highest current density was 3.08 mA cm(-2), which was obtained from fiber anode with high porosity of over 99% and fiber diameter of 0.87 μm. It was believed that the high current density was attributed to the high porosity, as well as proper fiber diameter which ensured formation of thick and continuous solid biofilms. 相似文献