首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
路易小体(Lewy body, LB),位于神经细胞核周(perikaryon)的嗜酸性包含体(eosinophilic inclusion),含有广泛的蛋白质组分,其中一部分是组成型蛋白质(consistent organization),另外一部分则是选择型蛋白质(selective composition).为了在体外获得LB中未知蛋白质的新线索,通过人工合成蛋白酶体抑制剂PSI(proteasomal inhibitor, 10 μmol/L)作用PC 12细胞48 h,使其产生嗜酸性(staining for eosin)和抗α-synuclein阳性(immunostaining for α- synuclein)的PSI诱导性包含体(PSI-induced inclusion),通过成功的分级分离(fractionation)纯化了完整、纯净的包含体,通过有效的双向电泳(two-dimensional electrophoresis,2-DE)分离了包含体蛋白质,通过无偏差的基质辅助激光解析 离子化飞行时间质谱(matrix- assisted laser desorption/ionization time-of-flight massspectrometry,MALDI-TOF MS)鉴定了真核细胞翻译起始因子-3亚单位5(eukaryotic translation initiation factor 3 subunit 5, eIF-3ε)、真核细胞延伸因子-2(eukaryotic elongation factor 2, eEF-2)和线粒体延伸因子-Tu(mitochondrial elongation factor Tu, EF-Tumt)等真核细胞翻译因子(eukaryotic translation factors).这一结果提示,当蛋白酶体受到抑制时真核细胞翻译因子被富集到PSI诱导性包含体中,并且可能影响其形成过程.  相似文献   

2.
原发性帕金森病(idiopathic Parkinson's disease,PD)的主要病理特征之一是出现于中脑特定脑区黑质致密部(substantia nigra pars compacta,SNpc)多巴胺能神经元的路易(小)体(Lewy bodies,LBs),PD病人LBs和/或路易轴突也出现于脑内其他脑区非多巴胺能神经元,比如蓝斑(locus coeruleus,LC)等脑干个别脑区去甲肾上腺素能神经元、额前叶皮层(prefrontal cortex,PFC)、颞叶皮层(temporal cortex,TC)等大脑多个脑区胆碱能神经元.为了明确LBs的蛋白质构成,本文通过蛋白质生物信息学数据分析,就LBs的蛋白质构成归纳了5个方面的要点:a.LBs的组织结构单元是α-突触核蛋白(α-synuclein,α-SYN)表征的2类纤维状聚集物和6类非纤维状聚集物(通常被称为寡聚物);b.病理性α-SYN在LBs内存在5种化学修饰形式;c.19个α-SYN相关蛋白质分别与α-SYN共定位于LBs;d.117个LBs的已知蛋白质被划分为10组不同蛋白质功能群组;e.LBs的蛋白质组学鉴定数据库包含了分别在LC、SNpc和PFC脑区组织水平鉴定的84、124和120个候选蛋白质,在TC脑区细胞水平鉴定的108个候选蛋白质,以及在TC脑区亚细胞水平鉴定的29个候选蛋白质.上述要点广泛、深入地概括了LBs的蛋白质构成.  相似文献   

3.
基于质谱和生物信息学分析的小菜蛾蛋白质鉴定   总被引:1,自引:0,他引:1  
谢苗  成娟  尤民生  杨广  蔡敬轩 《昆虫学报》2009,52(11):1206-1212
本研究以非模式昆虫小菜蛾Plutella xylostella为材料, 对比2, 3, 4龄幼虫的蛋白质组双向电泳图谱, 得到24个蛋白质差异点, 从中选取了编号为1111的差异表达蛋白质点进行质谱鉴定和生物信息学分析. 采用胶内酶解的多肽进行MALDI-TOF/TOF分析, 获得该点的肽质量指纹图谱(PMF)及串联质谱(MS/MS)图谱。将获得的PMF分别用MASCOT和ProFound等常用软件在NCBInr的Metazoa蛋白质数据库进行搜索, 匹配结果不理想. 进一步用PMF+MS/MS谱图搜索NCBInr的Metazoa蛋白质数据库, 以及小菜蛾EST数据库。 在NCBInr库中匹配结果为拟暗果蝇Drosophila pseudoobscura中的一种假定蛋白GA18218-PA, 而用EST库搜索的结果为家蚕Bombyx mori的ATP合酶的亚基。为验证搜索结果, 将该蛋白质点进行磺基异硫氰酸苯酯(SPITC)化学衍生后de novo测序, 最后确认该点可能为ATP合酶的一个亚基。最后着重讨论了蛋白质的质谱鉴定与生物信息学分析的联合使用, 希望据此选择出最适合于非模式昆虫蛋白质组学鉴定的方法。  相似文献   

4.
散发性帕金森病(sporadic Parkinson's disease, sPD)的主要病理特征之一是中脑黑质致密部(substantia nigra pars compacta, SNpc)残存多巴胺能神经元内核周路易(小)体(Lewy body, LB)形成.LB发生的具体原因和确切过程有待进一步阐释.来自遗传学、尸体解剖和实验科学的报道提示,蛋白酶体功能障碍及其所致的LB形成可能是按照聚集体形成途径(process of aggresomes)进行的.在聚集体形成途径过程中,异常蛋白质聚集基本上经历了非纤维化分子聚集过程(molecular crowding)以及后续的纤维化聚集过程(fibrilation of aggregation).其间,蛋白酶体功能障碍(dysfunction of proteasome)、内质网相关降解丧失(loss of endoplasmic reticulum associated degradation)、非纤维化聚集物(nonfibrilar aggregates)、聚集体(aggresomes)及至纤维化LB (fibrilar LB)等构成了sPD病变过程的主要事件.这提示在sPD病变过程中,蛋白酶体功能障碍及其所致的LB形成过程实质上是细胞信号的转导过程,其间涉及了众多的蛋白质分子.  相似文献   

5.
6.
Chaperone proteins are significant in Lewy bodies, but the profile of chaperone proteins is incompletely unraveled. Proteomic analysis is used to determine protein candidates for further study. Here, to identify potential chaperone proteins from agent-induced inclusions, we carried out proteomic analysis of artificially synthetic proteasome inhibitor (PSI)-induced inclusions formed in PC12 cells exposed to 10 μM PSI for 48 h. Using biochemical fractionation, 2-D electrophoresis, and identification through peptide mass fingerprints searched against multiple protein databases, we repeatedly identified eight reproducible chaperone proteins from the PSI-induced inclusions. Of these, 58 kDa glucose regulated protein, 75 kDa glucose regulated protein, and calcium-binding protein 1 were newly identified. The other five had been reported to be consistent components of Lewy bodies. These findings suggested that the three potential chaperone proteins might be recruited to PSI-induced inclusions in PC12 cells under proteasome inhibition.  相似文献   

7.
  总被引:5,自引:0,他引:5  
Proteasomal dysfunction has been recently implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and diffuse Lewy body disease. We have developed an in vitro model of proteasomal dysfunction by applying pharmacological inhibitors of the proteasome, lactacystin or ZIE[O-tBu]-A-leucinal (PSI), to dopaminergic PC12 cells. Proteasomal inhibition caused a dose-dependent increase in death of both naive and neuronally differentiated PC12 cells, which could be prevented by caspase inhibition or CPT-cAMP. A percentage of the surviving cells contained discrete cytoplasmic ubiquitinated inclusions, some of which also contained synuclein-1, the rat homologue of human alpha-synuclein. However the total level of synuclein-1 was not altered by proteasomal inhibition. The ubiquitinated inclusions were present only within surviving cells, and their number was increased if cell death was prevented. We have thus replicated, in this model system, the two cardinal pathological features of Lewy body diseases, neuronal death and the formation of cytoplasmic ubiquitinated inclusions. Our findings suggest that inclusion body formation and cell death may be dissociated from one another.  相似文献   

8.
Dynamic association of proteasomal machinery with the centrosome   总被引:31,自引:0,他引:31       下载免费PDF全文
Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with gamma-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation.  相似文献   

9.
Lewy bodies are cytoskeletal inclusions associated with neuronal injury and death in idiopathic Parkinson's disease and other neurodegenerative disorders. The chemical composition of the 8-10-nm fibrils of the Lewy body is unknown, although they are related to both normal cytoskeletal elements and paired helical filaments of Alzheimer neurofibrillary tangles. From the Lewy body-rich cerebral cortex of patients with diffuse Lewy body disease we have isolated intact Lewy bodies using a high salt buffer/nonionic detergent gradient centrifugation procedure and extracted the constitutive fibrils with urea and sodium dodecyl sulfate. Urea/detergent-resistant Lewy body fibrils were solubilized with formic acid and found to contain a single protein band of 68 kDa, which was not found in identically prepared normal brain homogenates. The Lewy body derived-polypeptide was recognized on immunoblots by a polyclonal antibody that reacted with both the 68-kDa neurofilament subunit and the microtubule-associated protein tau. The 68-kDa Lewy body protein was not labeled by the monoclonal antibody tau-1 despite prior in vitro enzymatic dephosphorylation. We conclude that the detergent-insoluble component of the cortical Lewy body fibril shares epitopes with neurofilament and tau and may be a posttranslationally modified derivative of either neurofilament or tau with substantially altered biochemical and immunologic properties.  相似文献   

10.
Lewy bodies (LBs) are the pathologic hallmark of Parkinson's disease. Recent studies revealed that LBs exhibit several morphologic and molecular similarities to aggresomes. Aggresomes are perinuclear aggregates representing intracellular deposits of misfolded proteins. Recently, valosin-containing protein (VCP) was one of the components of LBs, suggesting its involvement in LB formation. Here, we showed the localization of VCP in aggresomes induced by a proteasome inhibitor in cultured cells. Cells overexpressing mutant VCP (K524M: D2) showed reduced aggresome formation relative to those overexpressing wild-type and mutant (K251M: D1) VCPs. Our findings suggest that the D2 domain is involved in aggresome formation.  相似文献   

11.
《Cell》2023,186(16):3350-3367.e19
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

12.
微生物来源的syrbactins属于十二元内酰胺短肽类化合物,包括丁香霉素(syringolins)、滑杆菌素(glidobactins)、cepafungins和luminmycins等。其中,syringolins、glidobactins、luminmycins等几个化合物生物合成基因簇已被克隆、测序和异源表达。研究发现它们的十二元内酰胺环骨架都是由非核糖体肽合成酶(NRPS)-聚酮合酶(PKS)复合体采用模块化组装的方式,将系列底物组装而成。这类化合物因具有优异的蛋白酶体抑制活性而受到广泛关注。本文从syrbactins的分子结构、生物合成、作用机理等几个方面进行综述,介绍了近年来syrbactins的研究进展。  相似文献   

13.
Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A 1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号