首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied the general mechanism for regulation of beta-amylase synthesis in Clostridium thermosulfurogenes. beta-Amylase was expressed at high levels only when the organism was grown on maltose or other carbohydrates containing maltose units. Three kinds of mutants altered in beta-amylase production were isolated by using nitrosoguanidine treatment, enrichment on 2-deoxyglucose, and selection of colonies with large clear zones on iodine-stained starch-glucose agar plates. beta-Amylase was produced only when maltose was added to cells growing on sucrose in wild-type and catabolite repression-resistant mutant strains, but the differential rate of enzyme synthesis in constitutive mutants was constant regardless of the presence of maltose. In carbon-limited chemostats of wild-type and catabolite repression-resistant mutant stains, beta-amylase was expressed on maltose but not on glucose or sucrose. beta-Amylase synthesis was immediately repressed by the addition of glucose. Therefore, we concluded that beta-amylase synthesis in C. thermosulfurogenes was inducible and subject to catabolite repression. The addition of cAMP did not eliminate the repressive effect of glucose. The mutants were generally characterized in terms of beta-amylase production, growth properties, fermentation product formation, and alterations in glucose isomerase and glucoamylase activities. A hyperproductive mutant produced eightfold more beta-amylase on starch medium than the wild type and more rapidly fermented starch to ethanol.  相似文献   

3.
Identification of new genes involved in disaccharide fermentation in yeast   总被引:4,自引:0,他引:4  
Summary Maltose non-fermenting mutants were obtained from strains carrying a MAL4 allele which permits constitutive synthesis of maltase. Cells carrying this allele are able to utilize sucrose in the absence of the classical sucrose genes. All maltose non-fermenting mutants were also sucrose non-fermenters. Eight mutants had become maltase negative; 19 mutants could still form maltase constitutively.In crosses with segregational maltose and sucrose non-fermenting strains, enzyme negative mutants gave diploids unable to ferment maltose and sucrose. Enzyme positive, non-fermenting mutants gave diploids which readily fermented maltose and sucrose. This latter type of mutants was designated dsf (disaccharide fermentation) mutants.The diploids derived from crossing non-fermenting mutants with segregational non-fermenters were subjected to tetrad analysis. Enzyme negative non-fermenters gave only non-fermenting progeny. The dsf mutants segregated both fermenting and non-fermenting progeny, some of which showed the dsf phenotype. This indicated that none of the dsf mutants had a defect in a gene closely linked to MAL4. Crosses between dsf mutants and strains carrying the maltose genes MAL2 and MAL3 showed that the mutations affected maltose fermentation in general. Sucrose fermentation in the presence of the classical sucrose gene SUC3 was not affected, nor were fermentation of glucose, fructose and galactose.The uptake of radioactivity from uniformly labeled maltose appeared to be blocked in mutants of at least four of the dsf genes. Only one non-leaky and a leaky mutant showed a significant uptake.These results suggest that there is an extremely complex transport system for maltose and sucrose or that the utilization of these disaccharides requires a complex series of metabolic reactions.  相似文献   

4.
5.
6.
Studies indicated that prior growth of Staphylococcus aureus 196E on glycerol or maltose led to cells with repressed ability to produce staphylococcal enterotoxin A (SEA). A PTS- mutant (196E-MA) lacking the phosphoenolpyruvate phosphotransferase system (PTS), derived from strain 196E, showed considerably less repression of SEA synthesis when cells were grown in glycerol or maltose. Since SEA synthesis is not repressed in the PTS- mutant, repression of toxin synthesis by glycerol, maltose or glucose in S. aureus 196E appears to be related to the presence of a functional PTS irrespective of whether the carbohydrate requires the PTS for cell entry. With lactose as an inducer, glucose, glycerol, maltose or 2-deoxyglucose repressed the synthesis of beta-galactosidase in S. aureus 196E. It is postulated that these compounds repress enzyme synthesis by an inducer exclusion mechanism involving phosphorylated sugar intermediates. However, inducer exclusion probably does not explain the mechanism of repression of SEA synthesis by carbohydrates.  相似文献   

7.
8.
Molecular Genetics and Genomics - Glucose represses mitochondrial biogenesis and the fermentation of maltose, galactose and sucrose in yeast. We have analyzed the effect of D-glucosamine on these...  相似文献   

9.
The fission yeast Schizosaccharomyces pombe CBS 356 exhibits extracellular maltase activity. This activity may be of commercial interest as it exhibited a low pH optimum (3.5) and a high affinity for maltose (Km of 7.0+/-1.8 mM). N-terminal sequencing of the protein indicates that it is the product of the AGL1 gene. Regulation of this gene occurs via a derepression/repression mechanism. In sugar- or nitrogen-limited chemostat cultures, the specific rate of enzyme production (q(p)) was independent of the nature of the carbon source (i.e. glucose or maltose), but synthesis was partially repressed by high sugar concentrations. Furthermore, q(p) increased linearly with specific growth rate (mu) between 0.04 and 0.10 h(-1). The enzyme is easily mass-produced in aerobic glucose-limited fed-batch cultures, in which the specific growth rate is controlled to prevent alcoholic fermentation. In fed-batch cultures in which biomass concentrations of 83 g L(-1) were attained, the enzyme concentration reached 58,000 Units per liter culture supernatant. Extracellular maltase may be used as a dough additive in order to prevent mechanisms such as maltose-induced glucose efflux and maltose-hypersensitivity that occur in maltose-consuming Saccharomyces cerevisiae.  相似文献   

10.
11.
Summary Strain 1403-7A, which carries the MAL4 gene responsible for constitutive maltase synthesis, can ferment sucrose in the absence of sucrose genes. Sucrose fermentation cannot be separated from maltose fermentation either by genetic recombination or by mutation. Crude extracts of strain 1403-7A also lack the classical invertase, and fractionation of such extracts by gel filtration results in a peak of maltase activity which corresponds exactly to the activity with respect to sucrose hydrolysis. Moreover, in vitro, both of these disaccharides are hydrolyzed maximally at pH 6.4 to 6.8. It is suggested that, as long as sucrose can penetrate the cell, maltase, if present at high level in any strain, should be able to hydrolyze sucrose and therefore permit its fermentation. We have, however, identified in one of our yeast stocks a single recessive gene (ssf gene) which specifically interferes with sucrose fermentation in strain 1403-7A, probably by limiting the penetration of sucrose.  相似文献   

12.
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

13.
The incorporation of labelled amino sugars by Bacillus subtilis   总被引:1,自引:1,他引:0  
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

14.
Summary The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains.The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both antibiotics had about the same effect as growth in the presence of KCN.The results showed that mitochondria are involved in carbon catabolite repression and they cause an increase in the degree of repression. These effects cannot be due to mere metabolic activities nor to factors made on the mitochondrial protein synthesizing machinery. This regulatory role of mitochondria is observed as long as an intact mitochondrial genome is maintained.  相似文献   

15.
The kinetics of glucose repression of cytochrome c synthesis was measured by a radioimmune assay. When 5 or 10% glucose was added to a derepressed culture, the rate of cytochrome c synthesis was reduced to the repressed level with a half-life of 2 min. The addition of 1 or 0.5% glucose repressed the rate of cytochrome c synthesis to the same level as high glucose concentrations but with a longer half-life of 3 min. Glucose repression had no effect on the stability or function of the cytochrome c protein. Cellular levels of active cytochrome c mRNA during glucose repression were measured by translation of total cellular polyadenylic acid-containing RNA and immunoprecipitation cytochrome c from the translation products. The results of these measurements indicate that glucose represses the rate of cytochrome c synthesis through a reduction in the level of translatable cytochrome c mRNA.  相似文献   

16.
Regulation of the synthesis of maltase and methanol-oxidizing enzymes by the carbon source has been analyzed in the methylotrophic yeastHansenula polymorpha. Maltase was shown to be responsible for the growth ofH. polymorpha not only on maltose, but also on sucrose. The affinity of maltase towards maltase substrates decreased in the order: 4-nitrophenyl glucoside (pNPG) <sucrose <maltose. Mutants with glucose repression-insensitive synthesis of alcohol oxidase and maltase were obtained fromH. polymorpha by mutagenesis and subsequent selection on methanol medium in the presence of 2-deoxy-d-glucose. One of the isolated mutants, L63, was studied in more detail. Mutant L63 was recessive and monogenic and it was not deficient in hexokinase. Its analysis revealed thatH. polymorpha most probably has a repressor protein that in the presence of glucose can down-regulate expression of both maltase and enzymes of methanol oxidation.  相似文献   

17.
Mutants of an industrial-type strain of Saccharomyces cerevisiae which rapidly and completely fermented equimolar mixtures of glucose and galactose to ethanol were isolated. These mutants fell into two general phenotypic classes based upon their fermentation kinetics and enzyme induction patterns. One class apparently specifically effects the utilization of galactose and allows sequential utilization of first glucose and then galactose in an anaerobic fermentation. The second class of mutants was resistant to general catabolite repression and produced maltase, invertase, and galactokinase in the presence of repressive levels of glucose. These mutants were completely dominant and appear to represent an as yet undescribed class of mutant.  相似文献   

18.
Catabolite repression by galactose was investigated in several strains of Saccharomyces cerevisiae grown on different carbon sources. Galactose repressed as much as glucose; raffinose was less effective. Full derepression was achieved with lactate. The functions tested were L-lactate ferricytochrome c oxidoreductase, NAD-glutamate dehydrogenase, and respiration. Galactose repression was observed only in the GAL4 but not in the gal4 strain. The presence of multiple copies of the GAL4 gene enhanced the repression by galactose. Different alleles of the GAL4 gene and the copy number did not affect glucose repression.  相似文献   

19.
Aims: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations. Methods and Results: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5‐thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high‐affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose‐grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose. Conclusion: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways. Significance and Impact of the Study: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.  相似文献   

20.
Saccharomyces cerevisiae are unable to maintain high rates of fermentation during transition from catabolism of hexoses to maltose. This phenomenon, termed ‘maltose lag’, presents problems for the baking, brewing and distilling industries, which rely on yeast catabolism of mixtures of hexoses and maltose. Maltose utilisation requires the presence of maltose permease and α-glucosidase (maltase), encoded by MAL genes. Synthesis of these is induced by maltose and repressed by glucose. One strain of baker’s yeast used in this work exhibited a marked maltose lag, whereas a second strain exhibited a shorter lag during conversion from hexose to maltose metabolism. The extent of the lag was linked to the levels of maltose permease and maltase in cells at the time of inoculation into mixed sugar medium. This view is supported by results showing that pulsing yeast with maltose to induce expression of MAL genes prior to inoculation into mixed sugar medium, enhanced sugar fermentation. Maltose pulsing of yeasts could therefore be useful for enhancing some fermentations relevant to baking and other yeast industries. Received 24 December 1988/ Accepted in revised form 18 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号