首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Morimoto  M Sato 《Life sciences》1977,21(11):1685-1695
By artificially perfusing the frog tongue with serotonin (5HT) and its antagonists, the possibility of 5HT as a chemical transmitter from taste cells to nerve terminals in frog taste organ was examined. Although serotonin creatinine sulfate, when perfused through the lingual artery, produced impulse discharges in the glossopharyngeal nerve, creatinine sulfate elicited a similar response. Neural responses to taste stimuli were depressed by perfusion with 5HT. Among many antiserotonergic drugs perfused through the lingual artery, LSD was the only one which modified responses to taste stimuli. LSD suppressed taste responses to NaCl, CaCl2 and water, while LSD at a high concentration (10?5 g/ml) enhanced responses to guinine and HCl. When PCPA (DL-p-chlorophenylalanine) was injected intraperitoneally in conbination with reserpine, the agent did not significantly change taste responses. The above results possibly suggest that 5HT would not be a chemical mediator from taste cells to nerve terminals.  相似文献   

2.
Recent gustatory studies have provided a growing body of evidence that taste processing is dynamic and distributed, and the taste system too complex to be adequately described by traditional feed-forward models of taste coding. Current research demonstrates that neuronal responses throughout the gustatory neuroaxis are broad, variable and temporally structured, as a result of the fact that the taste network is extensive and heavily interconnected, containing modulatory pathways, many of which are reciprocal. Multimodal influences (e.g. olfactory and somatosensory) and effects of internal state (e.g. attention and expectation), shown in both behavioral and neuronal responses to taste stimuli, add further complexity to neural taste responses. Future gustatory research should extend to more brain regions, incorporate more connections, and analyze behaviors and neuronal responses in both time- and state-dependent manners.  相似文献   

3.
The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (D-tryptophan, D-phenylalanine, L-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (L-glutamine, L-threonine, L-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5'-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system.  相似文献   

4.

Background

The polycystic kidney disease-like ion channel PKD2L1 and its associated partner PKD1L3 are potential candidates for sour taste receptors. PKD2L1 is expressed in type III taste cells that respond to sour stimuli and genetic elimination of cells expressing PKD2L1 substantially reduces chorda tympani nerve responses to sour taste stimuli. However, the contribution of PKD2L1 and PKD1L3 to sour taste responses remains unclear.

Methodology/Principal Findings

We made mice lacking PKD2L1 and/or PKD1L3 gene and investigated whole nerve responses to taste stimuli in the chorda tympani or the glossopharyngeal nerve and taste responses in type III taste cells. In mice lacking PKD2L1 gene, chorda tympani nerve responses to sour, but not sweet, salty, bitter, and umami tastants were reduced by 25–45% compared with those in wild type mice. In contrast, chorda tympani nerve responses in PKD1L3 knock-out mice and glossopharyngeal nerve responses in single- and double-knock-out mice were similar to those in wild type mice. Sour taste responses of type III fungiform taste cells (GAD67-expressing taste cells) were also reduced by 25–45% by elimination of PKD2L1.

Conclusions/Significance

These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that receptors other than PKDs would be involved in sour detection.  相似文献   

5.
Taste receptor cells are the taste sensation elements expressing sour, salty, sweet, bitter and umami receptors, respectively. There are cell-to-cell communications between different types of cells. Nevertheless, the mechanism of taste sensation and taste information coded by taste receptor cell is not well understood at present and it is a long-standing issue. In order to explore taste sensation and analyze taste-firing responses from another point of view, we present a promising biomimetic taste receptor cell-based biosensor. The temporal firing responses to different tastants are recorded. Meanwhile, we investigate the firing rate and temporal firing of taste receptor cells. The experimental results are consistent with that from patch clamp and molecular biology experiment. Firing rate is dependent on the concentration of stimulus. PCA analysis (principal component analysis) of the temporal firing responses shows that the responses from different types of taste receptor cells can be distinguished. Furthermore, exogenous ATP is applied to mimic the effects of transmitter ATP (adenosine triphosphate) released from type II cells onto type III cells. Both enhanced and inhibitory effects on spontaneous firing are observed. This novel biomimetic hybrid biosensor provides a potential solution to investigate the taste sensation and coding mechanisms in a non-invasive way.  相似文献   

6.
Gurmarin (10 microg/ml), a protein extracted from Gymnema sylvestre, depressed significantly (40-50%) the phasic taste responses to sugars (sucrose, fructose, lactose, and maltose) and saccharin sodium recorded from the greater superficial petrosal nerve (GSP) innervating palatal taste buds in the rat. However, no significant effect of gurmarin was observed for taste responses to NaCl, HCl, and quinine hydrochloride. Phasic responses to D-amino acids that taste sweet to humans (His, Asn, Phe, Gln) were also depressed, but gurmarin treatment was without significant effect on taste responses to D-Trp and D-Ala, six L-amino acids (His, Asn, Phe, Gln, Trp, and Ala), and two basic amino acid HCl salts (Arg and Lys). With the exception of D-Trp, these inhibitory effects of gurmarin on GSP taste responses were related to the rat's preference for these substances.  相似文献   

7.
Palatable gustatory stimuli promote feeding, whereas gastric distension generally inhibits this behavior. We explored a neural basis for integration of these opposing sensory signals by evaluating the effect of gastric distension on gustatory responses in the parabrachial nucleus (PBN) of anesthetized rats. Sixteen percent of 92 taste cells were coactivated; they responded to independent taste or gastric distension stimulus application. Modulation of taste responses by distension was more prevalent; taste responses declined 37% in response to distension in 25% of the cells and increased by 46% in 10% of cells. Across the whole population, however, the suppressive effect of distension on taste responses was small (6%). The incidence of modulation did not vary as a simple hedonic function of gustatory sensitivity, i.e., similar proportions of sucrose-, citric-acid-, and QHCl-best, but not NaCl-best, neurons were modulated by gastric distension. Coactivated, modulated, and nonmodulated gustatory-responsive cells were intermingled in the gustatory zone of the caudal PBN. The suppression of PBN taste responses by visceral stimulation may reflect a mechanism for satiation and further implicates the PBN in the control of ingestive function.  相似文献   

8.
We examined the necessity of alpha-gustducin, a G protein alpha-subunit expressed in taste cells, to taste-mediated licking responses of mice to sapid stimuli. To this end, we measured licking responses of alpha-gustducin knock-out (Gus-/-) mice and heterozygotic littermate controls (Gus+/-) to a variety of 'bitter', 'umami', 'sweet', 'salty' and 'sour' taste stimuli. All previous studies of how Gus-/- mice ingest taste stimuli have used long-term (i.e. 48 h) preference tests, which may be confounded by post-ingestive and/or experiential effects of the taste stimuli. We minimized these confounds by using a brief-access taste test, which quantifies immediate lick responses to extremely small volumes of sapid solutions. We found that deleting alpha-gustducin (i) dramatically reduced the aversiveness of a diverse range of 'bitter' taste stimuli; (ii) moderately decreased appetitive licking to low and intermediate concentrations of an 'umami' taste stimulus (monosodium glutamate in the presence of 100 microM amiloride), but virtually eliminated the normal aversion to high concentrations of the same taste stimulus; (iii) slightly decreased appetitive licking to 'sweet' taste stimuli; and (iv) modestly reduced the aversiveness of high, but not low or intermediate, concentrations of NaCl. There was no significant effect of deleting alpha-gustducin on licking responses to NH4Cl or HCl.  相似文献   

9.
Previous studies suggest that the chorda tympani nerve (CT) is important in transmitting fat taste information to the central nervous system. However, the contribution of the CT in this process may depend upon the presence of other taste stimuli and/or differ in males and females. Accordingly, the present study investigated the role of the CT in free fatty acid taste processing by examining electrophysiological activity of the CT in response to the free fatty acid linoleic acid (LA), as well as by measuring behavioral responses to LA-taste mixtures. We recorded whole nerve responses from the CT in response to lingual application of LA with or without monosodium glutamate (MSG) in anesthetized male and female rats. In addition, we examined preferences for MSG + LA taste mixtures in behavioral tests. Although lingual application of LA alone did not produce CT whole nerve responses, coapplication of LA and MSG elicited greater CT responses than did MSG alone. These findings were paralleled by greater preferences for MSG + LA taste mixtures than for MSG alone. In both cases, the effect was particularly pronounced in male rats. Thus LA enhances CT activity and behavioral responses to LA + MSG taste mixtures, although there are sex differences in the effects. These results suggest that CT input is important in mediating behavioral responses to fat taste, but the effects depend upon other taste stimuli and differ in males and females.  相似文献   

10.
The Receptor Potential of the Taste Cell of the Rat   总被引:3,自引:2,他引:1       下载免费PDF全文
The electrical responses of the taste cell of the rat to chemical stimuli were studied by means of microelectrode techniques. Although large positive potential changes in the taste cell were usually elicited by taste stimuli, the response was a small negative potential change with respect to surrounding tissues if the microelectrode was thrust deeply into the taste bud. Both FeCl3 and cocaine produced a positive change in the steady potential. If this new potential is larger than a certain equilibrium potential, reversal of the polarity of the potential change caused by a taste stimulus is observed. Gamma-aminobutyric acid and acetylcholine had no effect on the receptor steady potential nor on the receptor responses elicited by taste stimuli.  相似文献   

11.
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.  相似文献   

12.
In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.  相似文献   

13.
Effects of chorda tympani nerve anesthesia on taste responses in the NST   总被引:1,自引:0,他引:1  
Dinkins  ME; Travers  SP 《Chemical senses》1998,23(6):661-673
Human clinical and psychophysical observations suggest that the taste system is able to compensate for losses in peripheral nerve input, since patients do not commonly report decrements in whole mouth taste following chorda tympani nerve damage or anesthesia. Indeed, neurophysiological data from the rat nucleus of the solitary tract (NST) suggests that a release of inhibition (disinhibition) may occur centrally following chorda tympani nerve anesthesia. Our purpose was to study this possibility further. We recorded from 59 multi- and single- unit taste-responsive sites in the rat NST before, during and after recovery from chorda tympani nerve anesthesia. During anesthesia, average anterior tongue responses were eliminated but no compensatory increases in palatal or posterior tongue responses were observed. However, six individual sites displayed increased taste responsiveness during anesthesia. The average increase was 32.9%. Therefore, disinhibition of taste responses was observed, but infrequently and to a small degree in the NST At a subset of sites, chorda tympani-mediated responses decreased while greater superficial petrosal-mediated responses remained the same during anesthesia. Since this effect was accompanied by a decrease in spontaneous activity, we propose that taste compensation may result in part by a change in signal-to-noise ratio at a subset of sites.   相似文献   

14.
阻断大鼠杏仁中央核AMPA受体对臂旁核味觉反应的影响   总被引:1,自引:0,他引:1  
Kang Y  Yan JQ  Huang T 《生理学报》2004,56(6):671-677
以往的研究表明,电刺激或损毁杏仁中央核明显改变臂旁核味觉神经元的活动。为了研究杏仁中央核内的兴奋性受体是否参与此调节,本实验应用细胞外记录方法,在乌拉坦麻醉的大鼠观察了杏仁中央核内微量注射6-氰基-7-硝基喹喔啉-2,3- 二酮(CNQX)前后臂旁核味觉神经元对四种基本味觉刺激反应的变化。结果表明,杏仁中央核内注射 CNQX 对 30% 的臂旁核神经元产生时间依赖性的抑制作用,此抑制作用以对盐酸和盐酸奎宁刺激引起的反应尤为明显(P<0.05)。根据对味觉刺激的优势反应,40% 的NaCl优势、30% 的HCl优势和20% 的奎宁优势反应神经元在注射CNQX 后对至少一种味觉刺激的反应降低;盐酸优势和奎宁优势反应神经元对各自的优势反应在杏仁中央核内注药后均明显降低(P<0.01)。相关性分析表明,在注射 CNQX 后,臂旁核味觉神经元对 NaCl 和其它三种味觉刺激物之间的分辨能力降低。以上结果表明,杏仁中央核内的AMPA 受体可能参与杏仁核对臂旁核味觉神经元的下行调控。  相似文献   

15.
In taste bud cells, glutamate may elicit two types of responses, as an umami tastant and as a neurotransmitter. Glutamate applied to apical membrane of taste cells would elicit taste responses whereas glutamate applied to basolateral membrane may act as a neurotransmitter. Using restricted stimulation to apical or basolateral membrane of taste cells, we examined responses of taste cells to glutamate stimulation, separately. Apical application of monosodium glutamate (MSG, 0.3 M) increased firing frequency in some of mouse fungiform taste cells that evoked action potentials. These cells were tested with other basic taste compounds, NaCl (salty), saccharin (sweet), HCl (sour), and quinine (bitter). MSG-sensitive taste cells could be classified into sweet-best (S-type), MSG-best (M-type), and NaCl or other electrolytes-best (N- or E/H-type) cells. Furthermore, S- and M-type could be classified into two sub-types according to the synergistic effect between MSG and inosine-5′-monophosphate (S1, M1 with synergism; S2, M2 without synergism). Basolateral application of glutamate (100 μM) had almost no effect on the mean spontaneous firing rates in taste cells. However, about 10% of taste cells tested showed transient increases in spontaneous firing rates (>mean + 2 standard deviation) after basolateral application of glutamate. These results suggest the existence of multiple types of umami-sensitive taste cells and the existence of glutamate receptor(s) on the basolateral membrane of a subset of taste cells.  相似文献   

16.
  • 1.1. Dye-coupling among taste disk cells in the bullfrog fungiform papillae was examined histologically by injecting a fluorescent dye (Lucifer yellow) into the cell, and the effects of the dye-coupling on depolarizing responses induced by taste stimuli were studied electrophysiologically.
  • 2.2. With dye injection into a taste cell, dye-coupling was found between taste cells (23%) or between taste cell and supporting cell (28%). With dye injection into a supporting cell, dye-coupling was found between supporting cells (34%) or between supporting cell and taste cell (27%).
  • 3.3. Depolarizing responses recorded from either a taste cell or a supporting cell to stimulation with 0.5 M NaCl or 10 mM quinine-HCl were the same in amplitude whether the dye-coupling to another cell was present or not. On the other hand, depolarizing responses recorded from a taste cell for 0.5 mM acetic acid became significantly larger when dye-coupled to a supporting cell.
  • 4.4. It is concluded that gustatory transduction for acid stimuli is influenced by supporting cells coupled to taste cells.
  相似文献   

17.
The hedonic dimension of the taste sensation plays a crucial role in the control of many taste-mediated responses related to food ingestion or rejection. The purpose of this study was to evaluate the emotional reactivity associated with each primary taste (sweet, salty, sour and bitter) through analysis of the variations of autonomic nervous system (ANS) parameters. Thirty-four healthy non-smoker volunteer subjects (17 males and 17 females, mean age = 28 years) participated in the experiment. Taste stimuli were solutions of 0.3 M sucrose (sweet), 0.15 M NaCl (salty), 0.02 M citric acid (sour) and 0.00015 M quinine sulfate (bitter). Evian mineral water was used as the diluent and control (neutral taste). Throughout the test, five ANS parameters (skin potential and skin resistance, skin blood flow and skin temperature, and instantaneous heart rate) were simultaneously and continuously recorded. Results of the ANOVA evidenced a significant effect of primary taste on skin resistance amplitude (P: < 0.001) and duration (P: < 0.0001), skin temperature amplitude (P: < 0.001), skin blood flow amplitude (vasoconstriction) (P: < 0.0001) and instantaneous heart rate increase (P: < 0.0001). Skin resistance and cardiac responses were the most relevant ANS parameters to distinguish among the taste solutions. The four primary tastes could be associated with significantly different ANS responses in relation to their hedonic valence: the pleasantly connoted and innate-accepted sweet taste induced the weakest ANS responses whereas the unpleasant connoted tastes (salty, sour and bitter) induced stronger ANS responses, the innate-rejected bitter taste inducing the strongest ones. Such a neurovegetative characterization of each primary taste could provide references for the hedonic analysis of the more complex gustative sensation attached to foods.  相似文献   

18.
Nagai T  Nii D  Takeuchi H 《Chemical senses》2001,26(8):965-969
Studies in the last two decades have shown that amiloride-sensitive Na(+) channels play a role in NaCl transduction in rat taste receptors. However, this role is not readily generalized for salt taste transduction in vertebrates, because functional expression of these channels varies across species and also in development in a species. Glossopharyngeal nerve responses to sodium and potassium salts were recorded in larval and metamorphosed salamanders and compared before and after the oral floor was exposed to amiloride, a blocker of Na(+) channels known to be responsible for epithelial ion transport. Pre-exposure to amiloride (100 microM) did not affect salt taste responses in both axolotls (Ambystoma mexicanum) and larval Ezo salamanders (Hynobius retardatus). In contrast, in metamorphosed Ezo salamanders the nerve responses to NaCl were significantly reduced by amiloride. In amphibians amiloride-sensitive components in salt taste transduction seem to develop during metamorphosis.  相似文献   

19.
The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 taste hairs, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 gustatory taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste.  相似文献   

20.

Background

Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers.

Results

We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers.

Conclusion

In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号