首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal uptake is the most important mechanism by which norepinephrine (NE) is removed from the synaptic clefts at sympathetic nerve terminals. We examined the effects of neuronal NE uptake blockade on the dynamic sympathetic regulation of the arterial baroreflex because dynamic characteristics are important for understanding the system behavior in response to exogenous disturbance. We perturbed intracarotid sinus pressure (CSP) according to a binary white noise sequence in anesthetized rabbits, while recording cardiac sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR). Intravenous administration of desipramine (1 mg/kg) decreased the normalized gain of the neural arc transfer function from CSP to SNA relative to untreated control (1.03 +/- 0.09 vs. 0.60 +/- 0.08 AU/mmHg, mean +/- SE, P < 0.01) but did not affect that of the peripheral arc transfer function from SNA to AP (1.10 +/- 0.05 vs. 1.08 +/- 0.10 mmHg/AU). The normalized gain of the transfer function from SNA to HR was unaffected (1.01 +/- 0.04 vs. 1.09 +/- 0.12 beats.min(-1).AU(-1)). Desipramine decreased the natural frequency of the transfer function from SNA to AP by 28.7 +/- 7.0% (0.046 +/- 0.007 vs. 0.031 +/- 0.002 Hz, P < 0.05) and that of the transfer function from SNA to HR by 64.4 +/- 2.2% (0.071 +/- 0.003 vs. 0.025 +/- 0.002 Hz, P < 0.01). In conclusion, neuronal NE uptake blockade by intravenous desipramine administration reduced the total buffering capacity of the arterial baroreflex mainly through its action on the neural arc. The differential effects of neuronal NE uptake blockade on the dynamic AP and HR responses to SNA may provide clues for understanding the complex pathophysiology of cardiovascular diseases associated with neuronal NE uptake deficiency.  相似文献   

2.
Activation of the sympathetic nervous system is well documented in heart failure. Our previous studies demonstrated an increase in evoked norepinephrine (NE) release from left ventricle (LV) slices at 10 days of pressure overload. The purpose of this study was to test the hypothesis that presynaptic modulation of NE release contributes to sympathetic activation after pressure overload. We examined the functional status of the presynaptic alpha(2)- and beta(2)-receptors and ANG II subtype 1 (AT(1)) receptors in LV slices from 10-day aortic constricted (AC) and sham-operated (SO) rats. Evoked (3)H overflow from LV slices preloaded with [(3)H]NE was increased in AC rats. The alpha(2)-agonist UK-14,304 decreased evoked (3)H overflow with no differences between groups. The beta(2)-agonist salbutamol increased evoked (3)H overflow with greater sensitivity in slices from AC rats. The beta-antagonist propranolol decreased evoked (3)H overflow from LV slices of AC rats but not controls. ANG II increased evoked (3)H overflow with greater sensitivity in slices from AC rats. These data support the hypothesis that aberrant presynaptic modulation of catecholamine release contributes to sympathetic activation after pressure overload.  相似文献   

3.
N Yamaguchi  M Brassard  R Briand 《Life sciences》1988,42(10):1101-1108
Changes in circulating plasma catecholamine (CA: E, epinephrine; NE, norepinephrine; and DA, dopamine) concentrations in aortic (AO) blood were investigated in relation to variable rates of CA secretion from both adrenal (ADR) glands in response to bilateral carotid artery occlusion (BLCO) in vagotomized dogs anesthetized with sodium pentobarbital. During BLCO (3 min), AO systolic pressure (AP) increased along with significant increases in ADR-CA output, renal venous (RV) CA output, as well as in AO-E and NE concentrations. A ratio of NE:E in ADR venous and AO blood did not exceed 0.42 +/- 0.09 and 1.09 +/- 0.24 upon BLCO, respectively. In contrast, the NE:E ratio in RV blood increased significantly from 5.39 +/- 0.91 to 9.78 +/- 1.31. Following adrenalectomy (ADRX), the increase in AO-NE in response to BLCO was significantly attenuated by approximately 56%, but the increase in RV-NE output was not affected by ADRX. The results show that in vagotomized dogs, NE is co-released with E from the adrenal glands upon BLCO. The data also indicate that the increase in AO-NE concentration was dependent to a similar extent on the simultaneous increases in ADR-NE output and neuronal NE release. We conclude that under conditions where the sympathoadrenal system is activated, circulating plasma NE concentration may be significantly affected by an increase in ADR-NE output. Sympathetic neuronal contributions would, thereby, be overestimated in assessing overall sympathetic nerve activity by measuring circulating NE. NE concentrations in local venous effluent from individual organs may be more reliable estimates of the sympathetic nerve activity.  相似文献   

4.
Although hypothermia is known to alter neuronal control of circulation, it has been uncertain whether clinically used hypothermia (moderate hypothermia) affects in situ cardiac sympathetic nerve endings. We examined the effects of moderate hypothermia on cardiac sympathetic nerve ending function in anesthetized cats. By use of a cardiac dialysis technique, we implanted dialysis probes in the midwall of the left ventricle and monitored dialysate norepinephrine (NE) levels as an index of NE output from cardiac sympathetic nerve endings. Hypothermia (27.0+/-0.5 degrees C) induced decreases in dialysate NE levels. Dialysate NE levels did not return to the control level at normothermia after rewarming. Dialysate NE response to inferior vena cava occlusion was attenuated at hypothermia but restored at normothermia after rewarming. Dialysate NE response to high K(+) (100 mM) was attenuated at hypothermia and was not restored at normothermia after rewarming. Hypothermia induced increases in dialysate dihydroxyphenylglycol (DHPG) levels. There were no differences in desipramine (neuronal NE uptake blocker, 10 microM) induced increment in dialysate NE level among control, hypothermia, and normothermia after rewarming. However, hypothermia induced an increase in DHPG/NE ratio. These data suggest that hypothermia impairs vesicle NE mobilization rather than membrane NE uptake. We conclude that moderate hypothermia suppresses exocytotic NE release via central mediated reflex and regional depolarization.  相似文献   

5.
6.
Under basal conditions, the levels of circulating norepinephrine (NE) and epinephrine (E) were higher in normotensive Wistar rats of different origins than in Sprague-Dawley rats. Since the decline of 3H-NE concentration in the plasma after i.v. injection was similar in Wistar and in Sprague-Dawley rats, the higher levels of endogenous NE in the former strain probably reflect greater NE release from sympathetic nerve terminals. In normotensive Sprague-Dawley and Wistar rats, plasma NE rose to various extents during cold exposure (4°C), depending on the basal plasma NE levels. Compared with normotensive Wistar Kyoto rats (WKY), spontaneously hypertensive rats (SHR) had similar basal plasma E and NE concentrations, similar rates of 3H-NE disappearance, but more rapid increases to higher values of plasma NE during cold exposure. It is concluded that the basal rate of peripheral catecholamine release does not seem to be the main determining factor for arterial blood pressure in the various rat strains and that the sympathetic neuronal system of SHR is more responsive to cold exposure than that of WKY rats.  相似文献   

7.
The amplitude of low-frequency (LF) oscillations of heart rate (HR) usually reflects the magnitude of sympathetic activity, but during some conditions, e.g., physical exercise, high sympathetic activity results in a paradoxical decrease of LF oscillations of HR. We tested the hypothesis that this phenomenon may result from a feedback inhibition of sympathetic outflow caused by circulating norepinephrine (NE). A physiological dose of NE (100 ng.kg(-1).min(-1)) was infused into eight healthy subjects, and infusion was continued after alpha-adrenergic blockade [with phentolamine (Phe)]. Muscle sympathetic nervous activity (MSNA) from the peroneal nerve, LF (0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) spectral components of HR variability, and systolic blood pressure variability were analyzed at baseline, during NE infusion, and during NE infusion after Phe administration. The NE infusion increased the mean blood pressure and decreased the average HR (P < 0.01 for both). MSNA (10 +/- 2 vs. 2 +/- 1 bursts/min, P < 0.01), LF oscillations of HR (43 +/- 13 vs. 35 +/- 13 normalized units, P < 0.05), and systolic blood pressure (3.1 +/- 2.3 vs. 2.0 +/- 1.1 mmHg2, P < 0.05) decreased significantly during the NE infusion. During the NE infusion after PHE, average HR and mean blood pressure returned to baseline levels. However, MSNA (4 +/- 2 bursts/min), LF power of HR (33 +/- 9 normalized units), and systolic blood pressure variability (1.7 +/- 1.1 mmHg2) remained significantly (P < 0.05 for all) below baseline values. Baroreflex gain did not change significantly during the interventions. Elevated levels of circulating NE cause a feedback inhibition on sympathetic outflow in healthy subjects. These inhibitory effects do not seem to be mediated by pressor effects on the baroreflex loop but perhaps by a presynaptic autoregulatory feedback mechanism or some other mechanism that is not prevented by a nonselective alpha-adrenergic blockade.  相似文献   

8.
Hemodynamic, gas exchange, and hormonal response induced by application of a 25- to 40-mmHg lower body positive pressure (LBPP), during positive end-expiratory pressure (PEEP; 14 +/- 2.5 cmH2O) were studied in nine patients with acute respiratory failure. Compared with PEEP alone, LBPP increased cardiac index (CI) from 3.57 to 4.76 l X min-1 X m-2 (P less than 0.001) in relation to changes in right atrial pressure (RAP) (11 to 16 mmHg; P less than 0.01). Cardiopulmonary blood volume (CPBV) measured in five patients increased during LBPP from 546 +/- 126 to 664 +/- 150 ml (P less than 0.01), with a positive linear relationship between changes in RAP and CPBV (r = 0.88; P less than 0.001). Venous admixture (Qva/QT) decreased with PEEP from 24 to 16% (P less than 0.001) but did not change with LBPP despite the large increase in CI, leading to a marked O2 availability increase (P less than 0.001). Although PEEP induced a significant rise in plasma norepinephrine level (NE) (from 838 +/- 97 to 1008 +/- 139 pg/ml; P less than 0.05), NE was significantly decreased by LBPP to control level (from 1,008 +/- 139 to 794 +/- 124 pg/ml; P less than 0.003). Plasma epinephrine levels were not influenced by PEEP or LBPP. Changes of plasma renin activity (PRA) paralleled those of NE. No change in plasma arginine vasopressin (AVP) was recorded. We concluded that LBPP increases venous return and CPBV and counteracts hemodynamic effects of PEEP ventilation, without significant change in Qva/QT. Mechanical ventilation with PEEP stimulates sympathetic activity and PRA apparently by a reflex neuronal mechanism, at least partially inhibited by the loading of cardiopulmonary low-pressure reflex and high-pressure baroreflex. Finally, AVP does not appear to be involved in the acute cardiovascular adaptation to PEEP.  相似文献   

9.
Cardiac sympathetic transmitter stores are reduced in the failing heart. In this study, we proposed to investigate whether the reduction of cardiac sympathetic neurotransmitters was associated with increased interstitial norepinephrine (NE) and reactive oxygen species in congestive heart failure (CHF), using a microdialysis technique and salicylate to detect .OH generation. Rabbits with and without rapid ventricular pacing (340 beats/min) were randomized to receive desipramine (10 mg/day) or placebo for 8 wk. Rapid pacing produced left ventricular dilation and systolic dysfunction. The failing myocardium also showed reduced tissue contents of NE and tyrosine hydroxylase protein and activity. In contrast, myocardial interstitial NE was increased in CHF (0.89 +/- 0.11 ng/ml) compared with the sham-operated animals (0.26 +/- 0.03 ng/ml). In addition, cardiac oxidative stress was increased in CHF animals as measured by myocardial interstitial .OH radical, tissue oxidized glutathione, and oxidized mitochondrial DNA. Desipramine treatment produced significant NE uptake inhibition as evidence by an exaggerated pressor response and a greater increase of myocardial interstitial NE in response to intravenous NE infusion but no significant effects on cardiac function or hemodynamics in sham-operated or CHF animals. However, desipramine treatment attenuated the reductions of tissue NE and tyrosine hydroxylase protein and activity in CHF. Desipramine also prevented the reduction of tyrosine hydroxylase produced by NE in PC12 cells. Thus the reduction of cardiac sympathetic neurotransmitters is related to the increased interstitial NE and tissue oxidative stress in CHF. Also, normal neuronal uptake of NE is required for NE or its oxidized metabolites to exert their neurotoxic effects.  相似文献   

10.
Perivascular sympathetic nerves are important determinants of vascular function that are likely to contribute to vascular complications associated with hyperglycemia and diabetes. The present study tested the hypothesis that glucose modulates perivascular sympathetic nerves by studying the effects of 7 days of hyperglycemia on norepinephrine (NE) synthesis [tyrosine hydroxylase (TH)], release, and uptake. Direct and vascular-dependent effects were studied in vitro in neuronal and neurovascular cultures. Effects were also studied in vivo in rats made hyperglycemic (blood glucose >296 mg/dl) with streptozotocin (50 mg/kg). In neuronal cultures, TH and NE uptake measured in neurons grown in high glucose (HG; 25 mM) were less than that in neurons grown in low glucose (LG; 5 mM) (P < 0.05; n = 4 and 6, respectively). In neurovascular cultures, elevated glucose did not affect TH or NE uptake, but it increased NE release. Release from neurovascular cultures grown in HG (1.8 ± 0.2%; n = 5) was greater than that from cultures grown in LG (0.37 ± 0.28%; n = 5; P < 0.05; unpaired t-test). In vivo, elevated glucose did not affect TH or NE uptake, but it increased NE release. Release in hyperglycemic animals (9.4 + 1.1%; n = 6) was greater than that in control animals (5.39 + 1.1%; n = 6; P < 0.05; unpaired t-test). These data identify a novel vascular-dependent effect of elevated glucose on postganglionic sympathetic neurons that is likely to affect the function of perivascular sympathetic nerves and thereby affect vascular function.  相似文献   

11.
We reported recently that inhibition of neuronal reuptake of norepinephrine (NE) by desipramine prevented the reduction of sympathetic neurotransmitters in the failing right ventricle of right heart failure animals. In this study, we studied whether desipramine also reduced the sympathetic neurotransmitter loss in animals with left heart failure induced by rapid ventricular pacing (225 beats/min) or after chronic NE infusion (0.5 microg. kg(-1). min(-1)). Desipramine was given to the animals for 8 wk beginning with rapid ventricular pacing or NE infusion. Animals receiving no desipramine were studied as controls. We measured myocardial NE content, NE uptake activity, and sympathetic NE, tyrosine hydroxylase, and neuropeptide Y profiles by histofluorescence and immunocytochemical techniques. Effects of desipramine on NE uptake inhibition were evidenced by potentiation of the pressor response to exogenous NE and reduction of myocardial NE uptake activity. Desipramine treatment had no effect in sham or saline control animals but attenuated the reduction of sympathetic neurotransmitter profiles in the left ventricles of animals with rapid cardiac pacing and NE infusion. In contrast, the panneuronal marker protein gene product 9.5 profile was not affected by either rapid pacing or NE infusion, nor was it changed by desipramine treatment in the heart failure animals. The study confirms that excess NE contributes to the reduction of cardiac sympathetic neurotransmitters in heart failure. In addition, it shows that the anatomic integrity of the sympathetic nerves is relatively intact and that the neuronal damaging effect of NE involves the uptake of NE or its metabolites into the sympathetic nerves.  相似文献   

12.
Accumulation of catecholamines in erythrocytes (RBC) was compared to rising plasma levels of catecholamines at weekly intervals following transplantation of pheochromocytoma (line P-259) in the New England Deaconess Hospital rat strain. Additionally changes were investigated during a 12 hour interval after tumor was established in PHEO rats. Starting 2 weeks after tumor implant, the concentrations of norepinephrine (NE) and dopamine (DA) in RBC paralleled and correlated strongly with rising levels of plasma NE and DA which were maximum by 4 weeks. Four to 6 weeks after implant, the RBC to plasma (L/P) concentration ratio of NE was 30% higher in PHEO rats than controls (p less than 0.05) indicating a shift in distribution of NE between the 2 circulating pools. Three measurements, 6 hours apart, showed that mean arterial pressure, plasma and RBC NE and DA concentrations were highest in AM in both PHEO and control groups. Shifts in DA were smaller and did not rise in PM as did NE suggesting DA may reflect tumor secretion and NE, tumor secretion plus sympathetic neuronal activity.  相似文献   

13.
Exposure to lower body negative pressure (LBNP) leads to an increased activation of the sympathetic nervous system (SNS) and an increase in muscle sympathetic nerve activity (MSNA). In this study, we examined the relationship between MSNA and interstitial norepinephrine (NE(i)) concentrations during LBNP. Twelve healthy volunteers were studied (26 +/- 6 yr). Simultaneous MSNA and microdialysis data were collected in six of these subjects. Measurements of MSNA (microneurography) and NE(i) (microdialysis, vastus lateralis) were performed at rest and then during an incremental LBNP paradigm (-10, -30, and -50 mmHg). MSNA rose as a function of LBNP (P < 0.001, n = 12). The plasma norepinephrine (NE(p)) concentration was 0.9 +/- 0.1 nmol/l at rest (n = 12). NE(i) measured in six subjects rose from 5.2 +/- 0.8 nmol/l at rest to 17.0 +/- 1.7 nmol/l at -50 mmHg (P < 0.001). Of note, the rise in NE(p) with LBNP was considerably less compared with the changes in NE(i) (Delta21 +/- 6% vs. Delta197 +/- 52%, n = 6, P < 0.015). MSNA and NE(i) showed a significant linear relationship (r = 0.721, P < 0.004). Activation of the SNS increased MSNA and NE(i) levels. The magnitude of the NE(i) increase was far greater than that seen for NE(p) suggesting that NE movement into the circulation decreases with baroreceptor unloading.  相似文献   

14.
The purpose of this study was to further document the role of locally released norepinephrine (NE) in the control of metabolic and endocrine responses to exercise in rats. Post-ganglionic blockade with bretylium (20 mg.kg-1, i.v.) reduced NE release from sympathetic nerve endings and triggered a compensatory increase in epinephrine (E) release from the adrenal medulla, as reflected by plasma NE and E concentrations at rest and exercise (E/NE ratio = 2.92 +/- 0.53 and 2.48 +/- 0.51 vs 0.62 +/- 0.15 and 1.48 +/- 0.18 in control rats; mean +/- SE). Following bretylium administration a reduction in running time to exhaustion (28 m.min-1, 8% slope: 33 +/- 2 min vs 74 +/- 10 min) was associated with 1) a faster decrease in blood glucose concentration (3.58 +/- 0.80 mM vs 8.09 +/- 0.38 mM in control rats exercised for 33 min); and 2) an increased glycogen store utilization in fast-twitch muscles (superficial vastus lateralis and gastrocnemius lateralis). Glycogen utilization was not modified in soleus muscle and in the liver. Taken together these results suggest that post-ganglionic blockade increased carbohydrate store and peripheral blood glucose utilization. This could reflect an impairment in fat mobilization and utilization which might be secondary to a reduction of NE release in the adipose tissue and/or in the endocrine pancreas.  相似文献   

15.
We hypothesized that support of arterial perfusion pressure with diaspirin cross-linked Hb (DCLHb) would prevent the sepsis-induced attenuation in the systemic O(2) delivery-O(2) uptake relationship. Awake septic rats were treated with a chronic infusion of DCLHb or a reference treatment [norepinephrine (NE)] to increase mean arterial pressure by 10-20% over 18 h. Septic and sham control groups received normal saline. Isovolemic hemodilution to create anemic hypoxia was then performed in a metabolic box during continuous measurement of systemic O(2) uptake. O(2) delivery was calculated from hemodynamic variables, and the critical point of O(2) delivery (DO(2 crit)) was determined using piecewise regression analysis of the O(2) delivery-O(2) uptake relationship. Sepsis increased DO(2 crit) from 4.99 +/- 0.17 to 6.69 +/- 0.42 ml x min(-1) x 100 g(-1) (P < 0.01), while O(2) extraction capacity was decreased (P < 0.05). DCLHb and NE infusion prevented the sepsis-induced increase in DO(2 crit) [4.56 +/- 0.42 ml x min(-1) x 100 g(-1) (P < 0.01) and 5.04 +/- 0.56 ml x min(-1) x 100 g(-1) (P < 0.05), respectively]. This was explained by a 59% increase in O(2) extraction capacity in the DCLHb group compared with septic controls (P < 0.05), whereas NE treatment decreased systemic O(2) uptake in anemic hypoxia (1.51 +/- 0.08 vs. 1.87 +/- 0.1 ml x min(-1) x 100 g(-1) in septic controls, P < 0.05). We conclude that DCLHb ameliorated O(2) extraction capacity in the septic microcirculation, whereas NE decreased the metabolic demands of the tissues.  相似文献   

16.
We investigated the central and peripheral sympathetic responses to intermittent dehydration in rats. The norepinephrine (NE) turnover, a biochemical index correlated with noradrenergic neuronal activity, was measured. The modification of blood pressure was also determined by telemetry during the different cycles of dehydration. Dehydration caused a decrease of NE turnover in A2, A5 and A6 nuclei and in peripheral organs. The vasopressinergic level of dehydrated rats decreased in hypophysis and hypothalamus, and increased in plasma. A repeated gradual increase of arterial blood pressure during the first three days of dehydration, followed by a sudden drop when the rats were rehydrated on the fourth day was observed. In conclusion, our study revealed an increase in blood pressure and in central sympathetic activity during dehydration.  相似文献   

17.
As angiotensin (Ang) (1-7) decreases norepinephrine (NE) content in the synaptic cleft, we investigated the effect of Ang-(1-7) on NE neuronal uptake in spontaneously hypertensive rats. [(3)H]-NE neuronal uptake was measured in isolated hypothalami. NE transporter (NET) expression was evaluated in hypothalamic neuronal cultures by western-blot. Ang-(1-7) lacked an acute effect on neuronal NE uptake. Conversely, Ang-(1-7) caused an increase in NET expression after 3 h incubation (40 ± 7%), which was blocked by the Mas receptor antagonist, a PI3-kinase inhibitor or a MEK1/2 inhibitor suggesting the involvement of Mas receptor and the PI3-kinase/Akt and MEK1/2-ERK1/2 pathways in the Ang-(1-7)-stimulated NET expression. Ang-(1-7) through Mas receptors stimulated Akt and ERK1/2 activities in spontaneously hypertensive rat neurons. Cycloheximide attenuated Ang-(1-7) stimulation of NET expression suggesting that Ang-(1-7) stimulates NET synthesis. In fact, Ang-(1-7) increased NET mRNA levels. Thus, we evaluated the long-term effect of Ang-(1-7) on neuronal NE uptake after 3 h incubation. Under this condition, Ang-(1-7) increased neuronal NE uptake by 60 ± 14% which was blocked by cycloheximide and the Mas receptor antagonist. Neuronal NE uptake and NET expression were decreased after 3 h incubation with an anti-Ang-(1-7) antibody. Ang-(1-7) induces a chronic stimulatory effect on NET expression. In this way, Ang-(1-7) may regulate a pre-synaptic mechanism in maintaining appropriate synaptic NE levels during hypertensive conditions.  相似文献   

18.
Exposure to hypobaric hypoxia (H; simulated altitude = 3658 m) was initiated in 5-week-old, male spontaneously hypertensive (SHR) and Wistar-Kyoto (WKy) normotensive rats while normoxic controls (N) for both groups were maintained under laboratory conditions. Significant attenuation of systolic arterial blood pressure was evident in SHR-H relative to SHR-N (125 +/- 6 vs 145 +/- 5 mm Hg; P less than 0.05) but not in WKy-H relative to WKy-N (WKy-H, 116 +/- 2 vs WKy-N, 117 +/- 5 mm Hg). Hypoxia significantly decreased metabolic efficiency in both normotensive and hypertensive rats, although being both more severe and accompanied by significantly impaired growth rate in SHR-H. Urinary excretion of norepinephrine in the SHR was elevated relative to WKy, irrespective of altitude treatment, while hypoxia elicited similar increases in urinary excretion of norepinephrine in both SHR and WKy. Myocardial and adrenal contents of norepinephrine were significantly reduced following 3 days of simulated altitude exposure in both strains of rats. Tissue contents of norepinephrine in hypoxic rats returned to normoxic levels by 21 days of simulated altitude. Both urine and tissue indices provided consistent indirect evidence that changes in sympathetic neuronal activity in response to hypoxia were similar in normotensive and hypertensive rats. These findings suggest that prior reports of reduced alpha-adrenergic responsiveness in vasculature from hypoxia-exposed SHR reflect a postsynaptic event that is regulated independently of norepinephrine release from sympathetic nerve terminals.  相似文献   

19.
The effect of a hypercalcemia-producing Leydig cell tumor on vascular reactivity in Fischer rats was studied. Seven to eight days after tumor implantation, there was no difference between tumor (T) and control (C) animals in serum calcium, serum phosphate, plasma catecholamine levels, mean arterial pressure (MAP), or blood pressure responses to norepinephrine (NE) infusion. At day 12-13 of tumor growth, the serum calcium in the tumor-bearing rats was significantly higher (12.2 +/- 0.8 vs. 9.7 +/- 0.3 mg%, P less than .01) and their serum phosphate significantly lower (4.5 +/- 0.3 vs. 5.7 +/- 0.4 mg%, P less than .01) than controls. Plasma epinephrine (E) (497 +/- 154 vs. 62 +/- 13 pg/ml, P less than .05), and norepinephrine (NE) (686 +/- 85 vs. 329 +/- 75 pg/ml, P less than .01) were markedly elevated in the tumor rats. MAP and the blood pressure responses to graded NE infusions were significantly lower in tumor animals at Day 12-13, whereas there was no change in sensitivity to angiotensin II (AII) infusions. In vitro contractile responses of tail artery segments to transmural nerve stimulation (TNS) in animals with tumors were lower than in controls but there were no differences in sensitivity to exogenous NE in vitro. These results suggest that the tumor stimulates production of a circulating factor which desensitizes NE receptors and that this tumor also decreases neurovascular function by an undefined mechanism.  相似文献   

20.
The modulation of cardiovascular sympathetic responses by neuropeptide Y (NPY) and peptide YY (PYY) was assessed in vivo, in pithed rats. Both peptides (0.02-2 nmol/kg) caused similar dose-dependent pressor responses, resistant to adrenergic blockade but antagonized by the calcium channel blocker, nifedipine. Only NPY, at the lowest dose, slightly accelerated heart rate (by 10 +/- 4 beats/min). At the pressor dose (0.6 nmol/kg) but not subpressor dose (0.2 nmol/kg), the increase in blood pressure induced by stimulation of the sympathetic outflow (ST: 0.3 Hz, 50 V, 1 min) was attenuated by PYY (by 40%), whereas ST-evoked tachycardia was reduced by NPY (by 35%). Neither NPY- nor PYY-pretreatment affected ST-induced increments in plasma norepinephrine (NE) and epinephrine concentrations. In addition, regional hemodynamic effects of NPY were studied in conscious rats instrumented with Doppler flow probes. The hypertension caused by NPY was attended by reflex bradycardia and marked rise in peripheral vascular resistance in renal (+ 233 +/- 59%), superior mesenteric (+ 183 +/- 65%) and hindquarter (+ 65 +/- 10%) circulation. The pattern of hemodynamic responses of NPY was similar to that of NE but, unlike the latter, persisted after adrenergic blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号