首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bid, a BH3-only pro-apoptopic member of the BCL-2 protein family, regulates cell death at the level of mitochondrial cytochrome c efflux. Bid consists of 8 α-helices (H1–H8, respectively) and is soluble cytosolic protein in its native state. Proteolysis of the N-terminus (encompassing H1 and H2) of Bid by caspase 8 in apoptosis yields activated “tBid” (truncated Bid), which translocates to the mitochondria and induces the efflux of cytochrome c. The release of cytochrome c from mitochondria to the cytosol constitutes a critical control point in apoptosis that is regulated by interaction of tBid protein with mitochondrial membrane. tBid displays structural homology to channel-forming bacterial toxins, such as colicins or transmembrane domain of diphtheria toxin. By analogy, it has been hypothesized that tBid would unfold and insert into the lipid bilayer of the mitochondria outer membrane (MOM) upon membrane association. However, it has been shown recently that unlike colicins and the transmembrane domain of diphtheria toxin, tBid binds to the lipid bilayer maintaining α-helical conformation of its helices without adopting a transmembrane orientation by them. Here, the mechanism of the association of tBid with the model membrane mimicking the mitochondrial membrane is studied by Monte Carlo simulations, taking into account the underlying energetics. A novel two-stage hierarchical simulation protocol combining coarse-grained discretization of conformational space with subsequent refinements was applied which was able to generate the protein conformation and its location in the membrane using modest computational resources. The simulations show that starting from NMR-established conformation in the solution, the protein associates with the membrane without adopting the transmembrane orientation. The configuration (conformation and location) of tBid providing the lowest free energy for the system protein/membrane/solvent has been obtained. The simulations reveal that tBid upon association with the membrane undergoes significant conformational changes primarily due to rotations within the loops between helices H4 and H5, H6 and H7, H7 and H8. It is established that in the membrane-bound state of tBid-monomer helices H3 and H5 have the locations exposed to the solution, helices H6 and H8 are partly buried and helices H4 and H7 are buried into the membrane at shallow depth. The average orientation of tBid bound to the membrane in the most stable configuration reported here is in satisfactory agreement with the evaluations obtained by indirect experimental means. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Insertion and translocation of soluble proteins into and across biological membranes are involved in many physiological and pathological processes, but remain poorly understood. Here, we describe the pH-dependent membrane insertion of the diphtheria toxin T domain in lipid bilayers by specular neutron reflectometry and solid-state NMR spectroscopy. We gained unprecedented structural resolution using contrast-variation techniques that allow us to propose a sequential model of the membrane-insertion process at angstrom resolution along the perpendicular axis of the membrane. At pH 6, the native tertiary structure of the T domain unfolds, allowing its binding to the membrane. The membrane-bound state is characterized by a localization of the C-terminal hydrophobic helices within the outer third of the cis fatty acyl-chain region, and these helices are oriented predominantly parallel to the plane of the membrane. In contrast, the amphiphilic N-terminal helices remain in the buffer, above the polar headgroups due to repulsive electrostatic interactions. At pH 4, repulsive interactions vanish; the N-terminal helices penetrate the headgroup region and are oriented parallel to the plane of the membrane. The C-terminal helices penetrate deeper into the bilayer and occupy about two thirds of the acyl-chain region. These helices do not adopt a transmembrane orientation. Interestingly, the T domain induces disorder in the surrounding phospholipids and creates a continuum of water molecules spanning the membrane. We propose that this local destabilization permeabilizes the lipid bilayer and facilitates the translocation of the catalytic domain across the membrane.  相似文献   

3.
Membrane-insertion fragments of Bcl-xL, Bax, and Bid   总被引:8,自引:0,他引:8  
Apoptosis regulators of the Bcl-2 family associate with intracellular membranes from mitochondria and the endoplasmic reticulum, where they perform their function. The activity of these proteins is related to the release of apoptogenic factors, sequestered in the mitochondria, to the cytoplasm, probably through the formation of ion and/or protein transport channels. Most of these proteins contain a C-terminal putative transmembrane (TM) fragment and a pair of hydrophobic alpha helices (alpha5-alpha6) similar to the membrane insertion fragments of the ion-channel domain of diphtheria toxin and colicins. Here, we report on the membrane-insertion properties of different segments from antiapoptotic Bcl-x(L) and proapoptotic Bax and Bid, that correspond to defined alpha helices in the structure of their soluble forms. According to prediction methods, there are only two putative TM fragments in Bcl-x(L) and Bax (the C-terminal alpha helix and alpha-helix 5) and one in activated tBid (alpha-helix 6). The rest of their sequence, including the second helix of the pore-forming domain, displays only weak hydrophobic peaks, which are below the prediction threshold. Subsequent analysis by glycosylation mapping of single alpha-helix segments in a model chimeric system confirms the above predictions and allows finding an extra TM fragment made of helix alpha1 of Bax. Surprisingly, the amphipathic helices alpha6 of Bcl-x(L) and Bax and alpha7 of Bid do insert in membranes only as part of the alpha5-alpha6 (Bcl-x(L) and Bax) or alpha6-alpha7 (Bid) hairpins but not when assayed individually. This behavior suggests a synergistic insertion and folding of the two helices of the hairpin that could be due to charge complementarity and additional stability provided by turn-inducing residues present at the interhelical region. Although these data come from chimeric systems, they show direct potentiality for acquiring a membrane inserted state. Thus, the above fragments should be considered for the definition of plausible models of the active, membrane-bound species of Bcl-2 proteins.  相似文献   

4.
The T domain of diphtheria toxin undergoes a low pH-induced conformational change that allows it to penetrate cell membranes. T domain hydrophobic helices 8 and 9 can adopt two conformations, one close to the membrane surface (P state) and a second in which they apparently form a transmembrane hairpin (TM state). We have now studied T domain helices 5-7, a second cluster of hydrophobic helices, using Cys-scanning mutagenesis. After fluorescently labeling a series of Cys residues, penetration into a non-polar environment, accessibility to externally added antibodies, and relative depth in the bilayer were monitored. It was found that helices 5-7 insert shallowly in the P state and deeply in the TM state. Thus, the conformational changes in helices 5-7 are both similar and somehow linked to those in helices 8 and 9. The boundaries of deeply inserting sequences were also identified. One deeply inserted segment was found to span residues 270 to 290, which overlaps helix 5, and a second spanned residues 300 to 320, which includes most of helix 6 and all of helix 7. This indicates that helices 6 and 7 form a continuous hydrophobic segment despite their separation by a Pro-containing kink. Additionally, it is found that in the TM state some residues in the hydrophilic loop between helices 5 and 6 become more highly exposed than they are in the P state. Their exposure to external solution in the TM state indicates that helices 5-7 do not form a stable transmembrane hairpin. However, helix 5 and/or helices 6 plus 7 could form transmembrane structures that are in equilibrium with non-transmembrane states, or be kinetically prevented from forming a transmembrane structure. How helices 5-7 might influence the mechanism by which the T domain aids translocation of the diphtheria toxin A chain across membranes is discussed.  相似文献   

5.
The influence of lipid bilayer properties on a defined and sequence-specific transmembrane helix-helix interaction is not well characterized yet. To study the potential impact of changing bilayer properties on a sequence-specific transmembrane helix-helix interaction, we have traced the association of fluorescent-labeled glycophorin A transmembrane peptides by fluorescence spectroscopy in model membranes with varying lipid compositions. The observed changes of the glycophorin A dimerization propensities in different lipid bilayers suggest that the lipid bilayer thickness severely influences the monomer-dimer equilibrium of this transmembrane domain, and dimerization was most efficient under hydrophobic matching conditions. Moreover, cholesterol considerably promotes self-association of transmembrane helices in model membranes by affecting the lipid acyl chain ordering. In general, the order of the lipid acyl chains appears to be an important factor involved in determining the strength and stability of transmembrane helix-helix interactions. As discussed, the described influences of membrane properties on transmembrane helix-helix interactions are highly important for understanding the mechanism of transmembrane protein folding and functioning as well as for gaining a deeper insight into the regulation of signal transduction via membrane integral proteins by bilayer properties.  相似文献   

6.
Rosconi MP  Zhao G  London E 《Biochemistry》2004,43(28):9127-9139
Low pH-induced membrane insertion by diphtheria toxin T domain is crucial for A chain translocation into the cytoplasm. To define the membrane topography of the T domain, the exposure of biotinylated Cys residues to the cis and trans bilayer surfaces was examined using model membrane vesicles containing a deeply inserted T domain. To do this, the reactivity of biotin with external and vesicle-entrapped BODIPY-labeled streptavidin was measured. The T domain was found to insert with roughly 70-80% of the molecules in the physiologically relevant orientation. In this orientation, residue 349, located in the loop between hydrophobic helices 8 and 9, was exposed to the trans side of the bilayer, while other solution-exposed residues along the hydrophobic helices 5-9 region of the T domain located near the cis surface. A protocol developed to detect the movement of residues back and forth across the membranes demonstrated that T domain sequences did not rapidly equilibrate between the cis and the trans sides of the bilayer. Binding streptavidin to biotinylated residues prior to membrane insertion only inhibited T domain pore formation for residues in the loop between helices 8 and 9. Pore formation experiments used an approach avoiding interference from transient membrane defects/leakage that may occur upon the initial insertion of protein. Combined, these results indicate that at low pH hydrophobic helices 8 and 9 form a transmembrane hairpin, while hydrophobic helices 5-7 form a nonclassical deeply inserted nontransmembraneous state. We propose that this represents a novel pre-translocation state that is distinct from a previously defined post-translocation state.  相似文献   

7.

Background

The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction.

Methodology/Principal Findings

Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death.

Conclusion/Significance

BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.  相似文献   

8.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane α-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 Å, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane α-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

9.
BIM and tBID are two BCL-2 homology 3 (BH3)-only proteins with a particularly strong capacity to trigger BAX-driven mitochondrial outer membrane permeabilization, a crucial event in mammalian apoptosis. However, the means whereby BIM and tBID fulfill this task is controversial. Here, we used a reconstituted liposomal system bearing physiological relevance to explore systematically how the BAX-permeabilizing function is influenced by interactions of BIM/BID-derived proteins and BH3 motifs with multidomain BCL-2 family members and with membrane lipids. We found that nanomolar dosing of BIM proteins sufficed to reverse completely the inhibition of BAX permeabilizing activity exerted by all antiapoptotic proteins tested (BCL-2, BCL-X(L), BCL-W, MCL-1, and A1). This effect was reproducible by a peptide representing the BH3 motif of BIM, whereas an equivalent BID BH3 peptide was less potent and more selective, reversing antiapoptotic inhibition. On the other hand, in the absence of BCL-2-type proteins, BIM proteins and the BIM BH3 peptide were inefficient, directly triggering the BAX-permeabilizing function. In contrast, tBID alone potently assisted BAX to permeabilize membranes at least in part by producing a structural distortion in the lipid bilayer via BH3-independent interaction of tBID with cardiolipin. Together, these results support the notion that BIM and tBID follow different strategies to trigger BAX-driven mitochondrial outer membrane permeabilization with strong potency.  相似文献   

10.
Wang J  Rosconi MP  London E 《Biochemistry》2006,45(26):8124-8134
After low pH-triggered membrane insertion, the T domain of diphtheria toxin helps translocate the catalytic domain of the toxin across membranes. In this study, the hydrophilic N-terminal helices of the T domain (TH1-TH3) were studied. The conformation triggered by exposure to low pH and changes in topography upon membrane insertion were studied. These experiments involved bimane or BODIPY labeling of single Cys introduced at various positions, followed by the measurement of bimane emission wavelength, bimane exposure to fluorescence quenchers, and antibody binding to BODIPY groups. Upon exposure of the T domain in solution to low pH, it was found that the hydrophobic face of TH1, which is buried in the native state at neutral pH, became exposed to solution. When the T domain was added externally to lipid vesicles at low pH, the hydrophobic face of TH1 became buried within the lipid bilayer. Helices TH2 and TH3 also inserted into the bilayer after exposure to low pH. However, in contrast to helices TH5-TH9, overall TH1-TH3 insertion was shallow and there was no significant change in TH1-TH3 insertion depth when the T domain switched from the shallowly inserting (P) to deeply inserting (TM) conformation. Binding of streptavidin to biotinylated Cys residues was used to investigate whether solution-exposed residues of membrane-inserted T domain were exposed on the external or internal surface of the bilayer. These experiments showed that when the T domain is externally added to vesicles, the entire TH1-TH3 segment remains on the cis (outer) side of the bilayer. The results of this study suggest that membrane-inserted TH1-TH3 form autonomous segments that neither deeply penetrate the bilayer nor interact tightly with the translocation-promoting structure formed by the hydrophobic TH5-TH9 subdomain. Instead, TH1-TH3 may aid translocation by acting as an A-chain-attached flexible tether.  相似文献   

11.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane alpha-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 A, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane alpha-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

12.
SNARE proteins mediate fusion of intracellular eukaryotic membranes and their α-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.  相似文献   

13.
Yao XL  Hong M 《Biochemistry》2006,45(1):289-295
Channel-forming colicins are bacterial toxins that spontaneously insert into the inner cell membrane of sensitive bacteria to form voltage-gated ion channels. It has been shown that the channel current and the conformational flexibility of colicin E1 channel domain depend on the membrane surface potential, which is regulated by the anionic lipid content and the ion concentration. To better understand the dependence of colicin structure and dynamics on the membrane surface potential, we have used solid-state NMR to investigate the topology and segmental motion of the closed state of colicin Ia channel-forming domain in membranes of different anionic lipid contents and ion concentrations. Colicin Ia channel domain was reconstituted into membranes with different POPG and KCl concentrations. 1H spin diffusion experiments indicate that the protein contains a small domain that inserts into the hydrophobic center of the 70% anionic membrane, similar to when it binds to the 25% anionic membrane. Measurements of C-H and N-H dipolar couplings indicate that, on the sub-microsecond time scale, the protein has the least segmental mobility under the high-salt and low-anionic lipid condition, which has the most physiological membrane surface potential. Measurement of millisecond time scale motions yielded similar results. These suggest that optimal channel activity requires the protein to have sufficient segmental rigidity so that entire helices can undergo cooperative conformational motions that are required for translocating the channel-forming helices across the lipid bilayer upon voltage activation.  相似文献   

14.
Bcl-2 family members, like the structurally similar translocation domain of diphtheria toxin, can form ion-selective channels and larger-diameter pores in artificial lipid bilayers. Recent studies show how Bcl-2 family members change topology in membranes during apoptosis and that these different states may either promote or inhibit apoptosis. Binding of BH3-only proteins alters the subcellular localization and/or membrane topology and probably affects the channel formation of Bcl-2, Bcl-xL and Bcl-w. However, it remains unclear how the pore-forming activity functions in cells to regulate mitochondrial membrane permeabilization and cell death. Bcl-2 family members in flies and worms regulate apoptosis by mechanisms seemingly unrelated to membrane permeabilization, leaving a unifying model for the biochemical activity of this protein family unknown. Work linking Bcl-2 family members to mitochondrial morphogenesis in worms and mammals suggests some common functions of Bcl-2 family proteins may exist.  相似文献   

15.
Conductance measurements on planar lipid bilayers demonstrate that CB1, a CNBr peptide of diphtheria toxin fragment B located in its middle region, possesses the unique property to destabilize the lipid bilayer organization. It is suggested that a segment of 25 amino acids in the N-terminal sequence of CB1 could be responsible for this effect. Its very low polarity, its predicted amphipathic helical structure and a helix length corresponding to the thickness of the hydrocarbon region of the lipid bilayer should specifically favor its insertion in the membrane. The existence of such a transverse lipid-associating domain could confer upon the molecule the properties leading to the anchoring of diphtheria toxin in the cytoplasmic membrane.  相似文献   

16.
K J Oh  H Zhan  C Cui  C Altenbach  W L Hubbell  R J Collier 《Biochemistry》1999,38(32):10336-10343
The isolated T domain of diphtheria toxin was mutated by cysteine-scanning mutagenesis at 28 consecutive sites (residues 328-355) that comprise the TH8 helix and the TL5 interhelical loop in the native toxin. After derivatizing the mutant proteins with a sulfhydryl-selective nitroxide reagent, we examined the mobility of each nitroxide and its accessibility to polar and nonpolar paramagnetic reagents, before and after insertion into phospholipid bilayers. The data obtained with the proteins in solution at pH 8 are generally consistent with predictions from the crystal structure of the toxin. Upon membrane binding at pH 4.6, a major structural reorganization of the domain was seen, which dramatically reduced the accessibility of most residues in this region to the polar reagent nickel(II)-ethylenediaminediacetate complex (NiEDDA). Many of these residues also showed reduced accessibility to the nonpolar reagent O(2). Periodic accessibility of the nitroxide side chains along the sequence to these reagents shows that TH8 remains largely helical in the membrane-bound state, with one surface associated with protein and the other facing the hydrophobic interior of the bilayer. In addition, the TL5 loop also appears to become alpha-helical in the membrane, with one surface in contact with protein and the other in contact with the bilayer interior. These findings provide a structural framework for understanding how the T domain forms a transmembrane channel and mediates translocation of diphtheria toxin's enzymic moiety across a membrane.  相似文献   

17.
Insights into the protein-membrane interactions by which the C-terminal pore-forming domain of colicins inserts into membranes and forms voltage-gated channels, and the nature of the colicin channel, are provided by data on: (i) the flexible helix-elongated state of the colicin pore-forming domain in the fluid anionic membrane interfacial layer, the optimum anionic surface charge for channel formation, and voltage-gated translocation of charged regions of the colicin domain across the membrane; (ii) structure-function data on the voltage-gated K(+) channel showing translocation of an arginine-rich helical segment through the membrane; (iii) toroidal channels formed by small peptides that involve local participation of anionic lipids in an inverted phase. It is proposed that translocation of the colicin across the membrane occurs through minimization of the Born charging energy for translocation of positively charged basic residues across the lipid bilayer by neutralization with anionic lipid head groups. The resulting pore structure may consist of somewhat short, ca. 16 residues, trans-membrane helices, in a locally thinned membrane, together with surface elements of inverted phase lipid micelles.  相似文献   

18.
Ladokhin AS  White SH 《Biochemistry》2004,43(19):5782-5791
Nonconstitutive membrane-active proteins, such as diphtheria toxin, must refold on membrane interfaces in the course of membrane penetration. A useful step in deciphering this process is to understand quantitatively the energetics of interface-mediated insertion of model transmembrane helices. A difficulty is that peptides that are sufficiently hydrophobic to span a lipid bilayer have a strong tendency to aggregate in the aqueous phase. To learn how to control the aqueous and membrane behavior of model peptides, we designed a 31-residue peptide (TMX-3) whose properties are described here. TMX-3 has two important structural features: a proline residue in the hydrophobic core that discourages the formation of highly helical aggregates in solution and two histidine residues that allow control of membrane and solution interactions by means of pH changes. The partitioning of TMX-3 into membranes followed complex kinetics, induced helicity, and shifted the histidine pK(a) from 6.8 to approximately 6. Topology measurements disclosed two general modes of TMX-3 binding: interfacial (IF) at low peptide concentrations and partial transmembrane (TM) insertion at higher concentrations. Both modes were reversible and, consequently, suitable for thermodynamic analysis. The free energies of IF partitioning of TMX-3 with deprotonated (pH 7.6) and protonated histidines (pH 4.5) were estimated by fluorescence titration to be -6.7 and -5.0 kcal/mol, respectively. These results show that histidine titration is likely to be important in the pH-dependent refolding of toxins on membrane interfaces and that the most favored state of TMX-3 under any conditions is the IF folded state, which emphasizes the importance of such states in the spontaneous refolding and insertion of diphtheria and other membrane toxins.  相似文献   

19.
BNip3 is a prominent representative of apoptotic Bcl-2 proteins with rather unique properties initiating an atypical programmed cell death pathway resembling both necrosis and apoptosis. Many Bcl-2 family proteins modulate the permeability state of the outer mitochondrial membrane by forming homo- and hetero-oligomers. The structure and dynamics of the homodimeric transmembrane domain of BNip3 were investigated with the aid of solution NMR in lipid bicelles and molecular dynamics energy relaxation in an explicit lipid bilayer. The right-handed parallel helix-helix structure of the domain with a hydrogen bond-rich His-Ser node in the middle of the membrane, accessibility of the node for water, and continuous hydrophilic track across the membrane suggest that the domain can provide an ion-conducting pathway through the membrane. Incorporation of the BNip3 transmembrane domain into an artificial lipid bilayer resulted in pH-dependent conductivity increase. A possible biological implication of the findings in relation to triggering necrosis-like cell death by BNip3 is discussed.  相似文献   

20.
The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号