共查询到20条相似文献,搜索用时 0 毫秒
1.
R W James D Hochstrasser J D Tissot M Funk R Appel F Barja C Pellegrini A F Muller D Pometta 《Journal of lipid research》1988,29(12):1557-1571
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II. 相似文献
2.
Two populations of A-I-containing lipoprotein particles: A-I-containing lipoprotein with A-II (Lp (A-I with A-II], and A-I-containing lipoprotein without A-II (Lp (A-I without A-II] have been isolated from plasma of 10 normolipidemic subjects by immunoaffinity chromatography and characterized. Both types of particles possess alpha-electrophoretic mobility and hydrated density in the range of plasma high-density lipoproteins (HDL). Lp (A-I without A-II) and Lp (A-I with A-II) are heterogeneous in size. Lp (A-I without A-II) comprised two distinct particle sizes with mean apparent molecular weight and Stokes diameter of 3.01 X 10(5), and 10.8 nm for Lp (A-I without A-II)1, and 1.64 X 10(5), and 8.5 nm for Lp (A-I without A-II)2. Lp (A-I with A-II) usually contained particles of at least three distinct molecular sizes with mean apparent molecular weight and Stokes diameter of 2.28 X 10(5) and 9.6 nm for Lp (A-I with A-II)1, 1.80 X 10(5) and 8.9 nm for Lp (A-I with A-II)2, and 1.25 X 10(5) and 8.0 nm for Lp (A-I with A-II)3. Apoproteins C, D, and E, and lecithin:cholesterol acyltransferase (LCAT) were detected in both Lp (A-I without A-II) and Lp (A-I with A-II) with most of the apoprotein D, and E, and LCAT (EC 2.3.1.43) in Lp (A-I with A-II) particles. Lp (A-I without A-II) had a slightly higher lipid/protein ratio than Lp (A-I with A-II). Lp (A-I with A-II) had an A-I/A-II molar ratio of approximately 2:1. The percentage of plasma A-I associated with Lp (A-I without A-II) was highly correlated with the A-I/A-II ratio of plasma (r = 0.96, n = 10). The variation in A-I/A-II ratio of HDL density subfractions therefore reflects different proportions of two discrete types of particles: particles containing A-I and A-II in a nearly constant ratio and particles containing A-II but no A-II. Each type of particle is heterogeneous in size and in apoprotein composition. 相似文献
3.
Pathways in the formation of human plasma high density lipoprotein subpopulations containing apolipoprotein A-I without apolipoprotein A-II 总被引:1,自引:0,他引:1
The lecithin:cholesterol acyltransferase (LCAT)-induced transformation of two discrete species of model complexes that differ in number of apolipoprotein A-I (apoA-I) molecules per particle was investigated. One complex species (designated 3A-I(UC)-complexes) contained 3 apoA-I per particle, was discoidal (13.5 X 4.4 nm), and had a molar composition of 22:78:1 (unesterified cholesterol (UC):egg yolk phosphatidylcholine (egg yolk PC):apoA-I). The other complex species (designated 2A-I(UC)complexes) containing 2 apoA-I per particle was also discoidal (8.4 X 4.1 nm) and had a molar composition of 6:40:1. Transformation of 3A-I(UC)complexes by partially purified LCAT yielded a product (24 hr, 37 degrees C) with a cholesteryl ester (CE) core, 3 apoA-I, and a mean diameter of 9.2 nm. The 2A-I(UC)complexes were only partially transformed to a core-containing product (24 hr, 37 degrees C) which also had 3 apoA-I; this product, however, was smaller (diameter of 8.5 nm) than the product from 3A-I(UC)complexes. Transformation of 3A-I(UC)complexes appeared to result from build-up of core CE directly within the precursor complex. Transformation of 2A-I(UC)complexes, however, followed a stepwise pathway to the product with 3 apoA-I, apparently involving fusion of transforming precursors and release of one apoA-I from the fusion product. In the presence of low density lipoprotein (LDL), used as a source of additional cholesterol, conversion of 2A-I(UC)complexes to the product with 3 apoA-I was more extensive. The transformation product of 3A-I(UC)complexes in the presence of LDL also had 3 apoA-I but was considerably smaller in size (8.6 vs. 9.2 nm, diameter) and had a twofold lower molar content of PC compared with the product formed without LDL. LDL appeared to act both as a donor of UC and an acceptor of PC. Transformation products with 3 apoA-I obtained under the various experimental conditions in the present studies appear to be constrained in core CE content (between 13 to 22 CE per apoA-I; range of 9 CE molecules) but relatively flexible in content of surface PC molecules they can accommodate (between 24 to 49 PC per apoA-I; range of 25 PC molecules). The properties of the core-containing products with 3 apoA-I compare closely with those of the major subpopulation of human plasma HDL in the size range of 8.2-8.8 nm that contains the molecular weight equivalent of 3 apoA-I molecules. 相似文献
4.
In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I,A-II. 总被引:6,自引:0,他引:6
D J Rader G Castro L A Zech J C Fruchart H B Brewer 《Journal of lipid research》1991,32(11):1849-1859
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways. 相似文献
5.
6.
M C Cheung A V Nichols P J Blanche E L Gong G Franceschini C R Sirtori 《Biochimica et biophysica acta》1988,960(1):73-82
The A-I Milano variant of apolipoprotein A-I (A-IM), by virtue of its Arg-173----Cys substitution, is capable of forming a disulfide bond with the 77-amino-acid apolipoprotein A-II polypeptide (A-IIS) as well as with itself to produce dimers, A-IM/A-IIS and A-IM/A-IM, respectively. A-I-containing lipoproteins (Lp): particles with A-II (Lp(A-I with A-11)) and particles without A-II (Lp(A-I without A-II)) in the plasma of two nonhyperlipidemic A-IM carriers were investigated to determine the effect of A-IM on these lipoproteins. Despite the existence of abnormal apolipoprotein dimers and the unusually low HDL cholesterol (17 and 14 mg/dl), A-I (67 and 75 mg/dl), and A-II (18 and 18 mg/dl) levels in the two carriers, the plasma A-I of the carriers was distributed between Lp(A-I with A-II) and Lp(A-I without A-II) in a proportion comparable to that observed in normals. As expected, A-IM/A-IIS mixed dimer was found in carrier Lp(A-I with A-II). However, A-IM/A-IM dimer was located almost exclusively in carrier Lp(A-I without A-II). Chemical (dimethylsuberimidate) crosslinking of the protein moieties of the major subpopulations of Lp(A-I with A-II) and Lp(A-I without A-II) of normal and A-IM carriers showed that Lp(A-I with A-II), which is located predominantly in the 7.8-9.7 nm interval ((HDL2a + 3a + 3b)gge), had an apparent protein molecular weight equivalent to two molecules of A-I and one to two molecules of A-II per particle. Most of the Lp(A-I without A-II) particles, located predominantly in the size intervals of 9.7-12.9 nm (designated (HDL2b)gge) and 8.2-8.8 nm (HDL3a)gge) had protein moieties exhibiting a molecular weight equivalence predominantly of four and three molecules of A-I, respectively. A small quantity of particles with apparent protein content of two molecules of A-I in the 7.2-8.2 nm interval ((HDL3b + 3c)gge) was also detected. These studies showed that in nonhyperlipidemic A-IM carriers, the occurrence of apolipoprotein dimers had not markedly affected the protein stoichiometry of Lp(A-I with A-II) and Lp(A-I without A-II). 相似文献
7.
H Noto Y Hashimoto H Satoh M Hara N Iso-o M Togo S Kimura K Tsukamoto 《Biochemical and biophysical research communications》2001,289(2):395-401
Paraoxonase1 (PON1) is a high-density lipoprotein (HDL)-associated protein which removes peroxidized lipids from lipoproteins. It has been proposed that apolipoprotein A-I (apoA-I) is an important determinant for its stabilization on HDL. However, little is known about its existence and activity in an apoA-I-deficient state in humans. To characterize the nature of PON1 in apoA-I deficiency, we investigated PON1 in an apoA-I-deficient patient. When serum was analyzed on fast protein liquid chromatography, PON1 protein was distributed almost exclusively on HDL despite the absence of apoA-I; on the other hand, 38.5% of PON1 protein was found in the lipoprotein-free fraction when the lipoproteins were fractionated through ultracentrifugation. The stability of PON1 activity in the patient serum was almost the same as in the normal control sera throughout incubation at 14 degrees C for 7 days. However, when the sera were incubated at 37 degrees C for 24 h, its activity declined more than those in the normal controls (19% versus 4% reduction of the initial values). Our results demonstrated that PON1 protein possesses a preferential association with HDL even in the absence of apoA-I, although apoA-I is a crucial factor for the maximal activity and stabilization of PON1. 相似文献
8.
Plasma HDL can be classified according to their apolipoprotein content into at least two types of lipoprotein particles: lipoproteins containing both apo A-I and apo A-II (LP A-I/A-II) and lipoproteins with apo A-I but without apo A-II (LP A-I). LP A-I and LP A-I/A-II were isolated by immuno-affinity chromatography. LP A-I has a higher cholesterol content and less protein compared to LP A-I/A-II. The average particle mass of LP A-I is higher (379 kDa) than the average particle weight of LP A-I/A-II (269 kDa). The binding of 125I-LP A-I to HepG2 cells at 4 degrees C, as well as the uptake of [3H]cholesteryl ether-labelled LP A-I by HepG2 cells at 37 degrees C, was significantly higher than the binding and uptake of LP A-I/A-II. It is likely that both binding and uptake are mediated by apo A-I. Our results do not provide evidence in favor of a specific role for apo A-II in the binding and uptake of HDL by HepG2 cells. 相似文献
9.
We have studied the binding of 125I-labeled high density lipoproteins (HDL3) to liver plasma membranes, which are thought to contain specific HDL receptor sites, using anti-peptide antibodies directed against two sites in the carboxyl-terminal region of human apoA-I. Two distinct antibody populations raised to peptides corresponding to amino acid residues 205-220 and 230-243, respectively, recognized regions of apoA-I that are exposed in the lipid environment of HDL3. However, anti-AI[230-243] IgG, but not anti-AI[205-220] IgG, recognized HDL2, suggesting that residues 205-220 of apoA-I are expressed differently in the two HDL populations. In addition, anti-AI[230-243] IgG showed strong cross-reactivity toward apoA-II. Epitope mapping studies showed that anti-AI[230-243] binds to an epitope located in the carboxyl-terminus of apoA-II, demonstrating significant structural homology between the carboxyl-terminal of apoA-II, demonstrating significant structural homology between the carboxyl-terminal regions of apoA-I and A-II, two candidate proteins for mediating the specific cellular interaction of HDL3. Fab fragments from anti-AI[205-220] and anti-AI[230-243] inhibited the binding of 125I-HDL3 to liver plasma membranes by approximately 80% and 60%, respectively. These findings are in agreement with our recent work using isolated CNBr fragments of apoA-I (Morrison, J., Fidge, N. H., and Tozuka, M. (1991) J. Biol. Chem. 266, 18780-18785), which suggest that the carboxyl-terminal region of apoA-I contains a binding domain which mediates the specific interaction of HDL3 with liver plasma membranes, possibly through the involvement of specific HDL receptors. 相似文献
10.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I. 相似文献
11.
E D Bekaert P Alaupovic C Knight-Gibson R A Norum M J Laux M Ayrault-Jarrier 《Biochimica et biophysica acta》1992,1126(1):105-113
High density lipoproteins (HDL) consist of a mixture of chemically and functionally distinct families of particles defined by their characteristic apolipoprotein (Apo) composition. The two major lipoprotein families are lipoprotein A-I (LP-A-I) and lipoprotein A-I:A-II (LP-A-I:A-II). This study describes the isolation of a third minor HDL family of particles referred to as lipoprotein A-II (LP-A-II) because it lacks ApoA-I and contains ApoA-II as its main or sole apolipoprotein constituent. Because ApoA-II is an integral protein constituent of three distinct lipoprotein families (LP-A-I:A-II, LP-A-II: B:C:D:E and LP-A-II), LP-A-II particles were isolated from whole plasma by sequential immunoaffinity chromatography on immunosorbers with antisera to ApoA-II, ApoB and ApoA-I, respectively. In normolipidemic subjects, the concentration of LP-A-II particles, based on ApoA-II content, is 4-18 mg/dl accounting for 5-20% of the total ApoA-II not associated with ApoB-containing lipoproteins. The lipid composition of LP-A-II particles is characterized by low percentage of triglycerides and cholesterol esters and a high percentage of phospholipids in comparison with lipid composition of LP-A-I and LP-A-II: A-II. The major part of LP-A-II particles contain ApoA-II as the sole apolipoprotein constituent; however, small subsets of LP-A-II particles may also contain ApoD and other minor apolipoproteins. The lipid/protein ratio of LP-A-II is higher than those of LP-A-I and LP-A-I:A-II. In homozygous ApoA-I and ApoA-I/ApoC-III deficiencies, LP-A-II particles are the only ApoA-containing high density lipoprotein with levels found to be within the same range (7-13 mg/dl) as those of normolipidemic subjects. However, in contrast to normal LP-A-II, their lipid composition is characterized by higher percentages of triglycerides and cholesterol esters and a lower percentage of phospholipids and their apolipoprotein composition by the presence of ApoC-peptides and ApoE in addition to ApoA-II and ApoD. These results show that LP-A-II particles are a minor HDL family and suggest that, in the absence of ApoA-I-containing lipoproteins, they become an efficient acceptor/donor of ApoC-peptides and ApoE required for a normal metabolism of triglyceride-rich lipoproteins. Their other possible functional roles in lipid transport remain to be established in future experiments. 相似文献
12.
The role of apolipoprotein A-I and apolipoprotein A-II in high-density lipoprotein binding to human adipocyte plasma membranes 总被引:1,自引:0,他引:1
Adipocyte plasma membranes purified from omental fat tissue biopsies of massively obese subjects possess specific binding sites for high-density lipoprotein (HDL3). This binding was independent of apolipoprotein E as HDL3 isolated from plasma of an apolipoprotein E-deficient individual was bound to a level comparable to that of normal HDL3. To examine the importance of apolipoprotein A-I, the major HDL3 apolipoprotein, in the specific binding of HDL3 to human adipocytes, HDL3 modified to contain varying proportions of apolipoproteins A-I and A-II was prepared by incubating normal HDL3 particles with different amounts of purified apolipoprotein A-II. As the apolipoproteins A-I-to-A-II ratio in HDL3 decreased, the binding of these particles to adipocyte plasma membranes was reduced. Compared to control HDL3, a 92 +/- 3.1% reduction (mean +/- S.E., n = 3) in maximum binding capacity was observed along with an increased binding affinity for HDL3 particles in which almost all of the apolipoprotein A-I had been replaced by A-II. The uptake of HDL cholesteryl ester by intact adipocytes as monitored by [3H]cholesteryl ether labeled HDL3, was also significantly reduced (about 35% reduction, P less than 0.005) by substituting apolipoprotein A-II for A-I in HDL3. These data suggest that HDL binding to human adipocyte membranes is mediated primarily by apolipoprotein A-I and that optimal delivery of cholesteryl ester from HDL to human adipocytes is also dependent on apolipoprotein A-I. 相似文献
13.
T J Muckle 《Analytical biochemistry》1978,85(2):442-450
The immunoelectrophoretic bimorphism exhibited by α-1 lipoprotein in serum containing the arylmethane dye thymolsulfonphthalcin has been revealed, by the use of specific antisera, to be based upon electrophoretic dissociation of lipoproteins A-I and A-II. The phenomenon may provide a basis for a novel means of isolation of these proteins. 相似文献
14.
High-density lipoprotein (HDL) subclasses 2 and 3 prepared by density gradient ultracentrifugation have been further fractionated by immunoaffinity chromatography using antibody affinity gels targetting the major HDL apolipoproteins, A-I and A-II. Fractions containing A-I without A-II (AI w/o AII) and A-I with A-II (AI w AII) were isolated from both density ranges. Whereas there were similar concentrations of the major subfraction (HDL3(AI w AII] in both males and females, the remaining subfractions were present in higher concentrations in females as compared to males, in the order HDL3 (AI w/o AII) less than HDL2(AI w AII) less than HDL2(AI w/o AII). The difference was most marked for HDL2 (AI w/o AII), where plasma concentrations in females were almost 3-fold greater than in males. Compositional analyses indicated that the plasma concentrations of the fractions, rather than their compositions, were the major determinants of male-female differences in HDL levels. In contrast, fractions defined by similar apolipoprotein criteria and isolated from different density subclasses (i.e., HDL2(AI w/o AII) vs. HDL3(AI w/o AII) and HDL2(AI w AII) vs. HDL3(AI w AII] showed major compositional differences. This is suggestive of distinct lipoprotein particles. 相似文献
15.
L A Zech E J Schaefer T J Bronzert R L Aamodt H B Brewer 《Journal of lipid research》1983,24(1):60-71
The metabolism of radioiodinated apolipoproteins (apo) A-I and A-II have been examined using the techniques of compartmental modeling. The model for apoA-I contains two plasma compartments decaying at different rates. One component of apoA-I has a residence time of 3.8 days and the second has a residence time of 6.1 days. In contrast, the apoA-II model has only one plasma component, with a residence time of 5.5 days, which decays through two distinct pathways. Twenty-seven percent of apoA-II decays through a pathway that takes 1.1 days longer to reach the urine than the remaining 73% which decays through the more direct path. These differences in the metabolism exist in both male and female populations. Comparison of fasting and nonfasting concentrations of apoA-I revealed that apoA-I concentration was elevated 0.5 standard deviations in the nonfasting samples while there was no significant difference in the apoA-II concentrations. The fasting apoA-I concentrations were found to be less stable over the study period when compared to fasting apoA-II concentrations. These findings are interpreted as indicating that apoA-I and apoA-II each have a separate metabolism which overlaps when they are present on the same lipoprotein particle. Furthermore, these findings are consistent with the concept that apoA-I metabolism is influenced more by perturbations such as dietary modulation. 相似文献
16.
17.
To elucidate further the conformation of human apolipoprotein A-I (apoA-I) in lipid-bound states and its effect on the reaction with lecithin cholesterol acyltransferase (LCAT), we prepared reconstituted HDL (rHDL) particles from a reaction mixture containing dipalmitoylphosphatidylcholine/cholesterol/apoA-I in the molar ratios of 150:7.5:1. The particles were separated by gel filtration into three classes of highly homogeneous and reproducible discs with diameters of 97, 136, and 186 A, containing 2, 3, and 4 molecules of apoA-I/disc, respectively, and increasing proportions of phospholipid and cholesterol. These three classes of particles were then investigated by a variety of fluorescence techniques, to probe the average environment and mobility of the tryptophan (Trp) residues in the structure of apoA-I. We found small, gradual changes in the fluorescence parameters with changes in the size of the rHDL, consistent with a shift of Trp residues to a more hydrophobic and more rigid environment, as well as an increased resistance of apoA-I to denaturation by guanidine hydrochloride in the larger particles. In contrast, circular dichroism measurements and binding studies with seven monoclonal antibodies indicated a similar alpha-helical structure (73%) for apoA-I in all the particles, and similar exposure of apoA-I epitopes in the COOH-terminal two-thirds of the apolipoprotein. Thus the structure of apoA-I is comparable for the three classes of particles and is consistent with the presence of eight alpha-helical segments per apoA-I in contact with the lipid. In addition, we obtained the apparent kinetic parameters for the reaction of the rHDL particles with lecithin cholesterol acyltransferase. The apparent Km values were similar but the apparent Vmax decreased almost 8-fold, going from the 97- to the 186-A particles; therefore, the decreasing reactivity for the larger particles can be attributed mainly to differences in the catalytic rate constant. The rate limiting step is probably affected by local structural differences in the apoA-I, or by the interfacial properties of the lipid. 相似文献
18.
We employed quasi-elastic light scattering (QLS) to systematically study the aqueous self-association of human apolipoproteins A-I and A-II (apo A-I and apo A-II) and the interactions of apo A-I with common taurine-conjugated bile salts. Self-association of apo A-I was promoted by increases in apolipoprotein concentration (0.09-2.2 mg/mL) and ionic strength (0.15-2.0 M NaCl), inhibited by increases in temperature (5-50 degrees C) and guanidine hydrochloride concentration (0-2.0 M), and unaffected by hydrostatic pressures up to 500 atm. The mean hydrodynamic radius (Rh) of apo A-I micelles ranged from 38 A to a maximum asymptotic value of 68 A. We examined several possible models of apo A-I self-association; the model that best fitted the Rh values assumed that apo A-I monomers first interacted at low concentrations to form dimers, which then further associated to form ring-shaped limiting octamers. Comparison of the temperature-dependent and ionic strength dependent free energy changes for the formation of octamers from apo A-I dimers suggested that hydrophobic forces strongly favored self-association and that electrostatic repulsive forces were only weakly counteractive. Apo A-II self-association was also promoted by increases in apolipoprotein concentration (0.2-1.8 mg/mL) and inhibited by increases in guanidine hydrochloride concentration (0-1.0 M) but was unaffected by variations in temperature (10-37 degrees C): the largest Rh values observed were consistent with limiting tetramers. As demonstrated by equilibrium dialysis, bile salts in concentrations below their critical micellar concentrations (cmc) bound to apo A-I micelles but had no effect upon apo A-I self-association, as inferred from constant Rh values. When bile salt concentrations exceeded their aqueous cmc values, a dissociation of apo A-I micelles resulted with the formation of mixed bile salt/apo A-I micelles. These studies support the concepts that apo A-I and apo A-II form small dimeric micelles at low concentrations that grow sharply to reach limiting sizes over a narrow concentration range. The influences of bile salt concentration and species upon these micelles have relevance to the plasma transport of bile salts in high-density lipoproteins and to the physical-chemical state of apo A-I and apo A-II molecules in native biles. 相似文献
19.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1984,792(2):164-171
The formation of hybrid association products between apolipoprotein A-I and apolipoprotein A-II from human high-density lipoprotein was investigated in solutions of these apolipoprotein and in recombinant particles with dimyristoylphosphatidylcholine (DMPC). It was found that these two proteins interact in solution to form hybrid association products, but not to a marked degree. When these two proteins were incubated together with DMPC, it was likewise found that there was little tendency to reside on the same particle, as judged from the absence of hybrid oligomers by chemical cross-linking. By a modified immunoelectrophoretic method it was found that only about 15% of the A-II and 10% of the A-I were precipitated by the heterologous antiserum; from this it is concluded that 80–90% of these proteins do not form hybrid recombinants with the other protein. These results suggest that in the delipidated state, as well as in discoidal recombinants, there do not exist strong protein-protein interactions between A-I and A-II. This implies that even in the high-density lipoprotein, where both proteins coexist in the same particle, the A-II does not stabilize the molecular structure through interactions with A-I, and its role in this molecule remains obscure. 相似文献
20.
R F Atmeh 《Biochemical medicine and metabolic biology》1987,38(3):317-330
The differential rate equations describing the compartmental model of human high-density lipoprotein (HDL) were integrated by means of Laplace transforms and an exponential equation was obtained for each of the three compartments. These equations were used to fit the observed plasma decay data and give estimates for the rate constants of the system by means of a written computer program. Furthermore, these estimates were used to calculate the exponential constants of the integrated equations. Consequently, the amount of label in any of the intravascular, extravascular, and urine compartments can be calculated as a fraction of the original dose of label at any time point. This method was tested using data for the (AI)HDL subclass because it contains only apolipoprotein A-I as the major apolipoprotein and does not contain apolipoprotein A-II. The calculated plasma and urine radioactivity data were compared with the experimentally obtained data from two normolipoproteinemic subjects and found to be in good agreement. The significance of this method is its application to the analysis of the decay data of the individual apolipoproteins of (AI + AII) HDL subclass where the urinary radioactivity data resulting from the individual apolipoprotein breakdown on the native particle cannot be measured experimentally at present. Such data are essential for the detailed calculation of the kinetic parameters of these apolipoproteins. 相似文献