首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xu FJ  Li YL  Kang ET  Neoh KG 《Biomacromolecules》2005,6(3):1759-1768
Well-defined (nearly monodispersed) poly(poly(ethylene glycol)monomethacrylate)-Si hybrids were prepared via surface-initiated atom transfer radical polymerization (ATRP) of the poly(ethylene glycol)monomethacrylate (PEGMA) macromonomer on the hydrogen-terminated Si(111) surface (Si-H surface). Both the active chloride groups at the chain ends (from the ATRP process) and the chloride groups converted from some ( approximately 32%) of the -OH groups of the Si-C bonded PEGMA polymer, or P(PEGMA), brushes were used as leaving groups for the covalent coupling of heparin. For the heparinized P(PEGMA)-Si hybrid surfaces, protein adsorption and platelet adhesion were significantly suppressed. The well-defined and dense P(PEGMA) brushes, prepared from surface-initiated ATRP, had allowed the immobilization of a relatively high concentration of heparin (about 14 mug/cm(2)). The resulting silicon surface exhibited significantly improved antithrombogenecity with a plasma recalcification time (PRT) of about 150 min. The persistence of high bioactivity for the immobilized heparin on the hybrid surfaces can be attributed to the biocompatibility of the PEGMA units, as well as their role as spacers in providing the immobilized heparin with a higher degree of conformational freedom in a more hydrophilic environment. Thus, the heparin-coupled P(PEGMA)-Si hybrids with anti-fouling and antithrombogenic surfaces are potentially useful in silicon-based implantable devices and tissue engineering.  相似文献   

2.
Xu FJ  Cai QJ  Li YL  Kang ET  Neoh KG 《Biomacromolecules》2005,6(2):1012-1020
A simple one-step procedure was employed for the covalent immobilization of an atom-transfer radical polymerization (ATRP) initiator, via the robust Si-C bond, on the hydrogen-terminated Si(111) surface (Si-H surface). Well-defined poly(glycidyl methacrylate) [P(GMA)] brushes, tethered directly on the (111)-oriented single-crystal silicon surface, were prepared via surface-initiated ATRP. Kinetics study on the surface-initiated ATRP of glycidyl methacrylate revealed that the chain growth from the silicon surface was consistent with a "controlled" process. A relatively high concentration of glucose oxidase (GOD; above 0.2 mg/cm2) could be coupled directly to the well-defined P(GMA) brushes via the ring-opening reaction of the epoxide groups with the amine moieties of the enzyme. The resultant GOD-functionalized P(GMA) brushes, with the accompanying hydroxyl groups from the ring-opening reaction of the epoxide groups, serves as an effective spacer to provide the GOD with a higher degree of conformational freedom and a more hydrophilic environment. An equivalent enzyme activity above 1.6 units/cm2 [micromoles of beta-D-(+)-glucose oxidized to d-gluconolactone per minute per square centimeter] and a corresponding relative activity of about 60% could be readily achieved. The immobilized GOD also exhibited an improved stability during storage over that of the free enzyme. The GOD-functionalized silicon substrates are potentially useful to the development of silicon-based glucose biosensors.  相似文献   

3.
Poly(N-isopropylacrylamide)-based [P(NIPAAm)-based] semi-interpenetrating polymer networks (semi-IPNs), consisting of P(NIPAAm)-based hydrogels and linear poly(acrylic acid) [P(AAc)] chains, were synthesized, and the effects of the P(AAc) chains on semi-IPN injectability and phase behavior were analyzed. In P(NIPAAm)- and P(NIPAAm-co-AAc)-based semi-IPN studies, numerous reaction conditions were varied, and the effects of these factors on semi-IPN injectability, transparency, phase transition, lower critical solution temperature (LCST), and volume change were examined. The P(AAc) chains did not significantly affect the LCST or volume change of the semi-IPNs, compared to control hydrogels. However, the P(AAc) chains affected the injectability, transparency, and phase transition of the matrices, and these effects were dependent on chain amount and molecular weight (MW) and on interactions between the P(AAc) chains and the solvent and/or copolymer chains in P(NIPAAm-co-AAc) hydrogels. These results can be used to design "tailored" P(NIPAAm)-based semi-IPNs that have the potential to serve as functional scaffolds in tissue engineering applications.  相似文献   

4.
To improve the antimicrobial ability of silicon-based bioelectronics and to tailor the silicon surfaces for inhibiting biofilm formation, well-defined functional polymer-Si(100) hybrids, consisting of nearly monodispersed poly((2-dimethylamino)ethyl methacrylate) (P(DMAEMA)) covalently tethered on the silicon surface and functionalized by viologen moieties, were prepared. P(DMAEMA)-Si hybrids were prepared via surface-initiated atom transfer radical polymerization (ATRP) of (2-dimethylamino)ethyl methacrylate (DMAEMA) on the hydrogen-terminated Si(100) surfaces (Si−H surfaces). The tertiary amino groups of the covalently immobilized (Si−C bonded) P(DMAEMA) brushes on the silicon substrates were quaternized by an alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes produced the quaternized P(DMAEMA)-Si(100) hybrids with substantially enhanced antimicrobial capability, as well as capability to effectively inhibit biofilm formation. Thus, the viologen-quaternized P(DMAEMA)-Si(100) hybrids possess good antibacterial surface properties and are potentially useful to the silicon-based bioelectronics to ensure their efficiency, durability and reliability.  相似文献   

5.
To better understand protein/material and cell/material interactions at the submolecular level, well-defined polymer brushes consisting of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) on silicon wafers were prepared by atom transfer radical polymerization (ATRP). Silicon wafers were treated with 3-(2-bromoisobutyryl)propyl dimethylchlorosilane (BDCS) to form a monolayer that acts as initiators for ATRP. Silicon-supported BDCS monolayers were soaked in a methanol/water mixture solution containing Cu(I)Br, bipyridine, and a sacrificial initiator. After MPC was added to the solution, ATRP was carried out for 18 h. The molecular weight and thickness of the PMPC brush layer on the silicon surface increased with an increase in the polymerization time. The dense polymer brushes were obtained by the "grafting from" system. By selective decomposition of the BDCS monolayer by UV light-irradiation, the PMPC brush region and the sizes were well controlled, resulting in fabricating micropatterns of the PMPC brushes. When the thickness of the PMPC brush layer was greater than 5.5 +/- 1.0 nm (3 h polymerization), serum protein adsorption and fibroblast adhesion were effectively reduced, i.e., proteins and cells could recognize such thin polymer brushes on the surface. In addition, the density of the adherent cells on the patterned PMPC brush surface could be controlled by changing the size of the pattern.  相似文献   

6.
Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP   总被引:1,自引:0,他引:1  
Novel thermo-responsive cellulose (filter paper) surfaces of N-isopropylacrylamide (NIPAAm) and pH-responsive cellulose surfaces of 4-vinylpyridine (4VP) have been achieved via surface-initiated ATRP. Dual-responsive (pH and temperature) cellulose surfaces were also obtained through the synthesis of block-copolymer brushes of PNIPAAm and P4VP. With changes in pH and temperature, these "intelligent" surfaces showed a reversible response to both individual triggers, as indicated by the changes in wettability from highly hydrophilic to highly hydrophobic observed by water contact angle measurements. Adjusting the composition of the grafted block-copolymer brushes allowed for further tuning of the wettability of these "intelligent" cellulose surfaces.  相似文献   

7.
In this novel platform, a micropatterned polymer brush was obtained by grafting poly(poly(ethylene glycol) methyl ether methacrylate) (poly(PEGMA)) from a thin macroinitiator film using atom transfer radical polymerization (ATRP). A pattern of holes was formed in the macroinitiator film by taking advantage of its spontaneous dewetting above the glass transition temperature from a bottom polystyrene film, driven by unfavorable intermolecular forces. Patterning by dewetting can be achieved at length-scales from a few hundred nanometers to several tens of micrometers, by simply thermally annealing the bilayer above the glass transition temperature of the polymer. This approach is substrate-independent, as polymer films can be cast onto surfaces of different size, shape, or material. As a demonstration of its potential, proteins, and individual cells were attached on targeted bioadhesive polystyrene areas of the micropatterns within poly(PEGMA) protein-repellent brushes. We anticipate this approach will be suitable for the patterning of brushes, especially for biomedical applications such as in the study of single cells and of cell cocultures.  相似文献   

8.
This paper investigates the stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) (PPEGMA) brushes prepared by surface-initiated atom transfer radical polymerization from SiO(x) substrates modified with a trimethoxysilane-based ATRP initiator. At high chain densities, PPEGMA brushes were found to detach rapidly from glass or silicon substrates. Detachment of the PPEGMA brushes could be monitored with contact angle measurements, which indicated a decrease in the receding water contact angle upon detachment. Detachment of the PPEGMA brushes also resulted in an increase in nonspecific protein adsorption. The stability, and as a consequence the long-term nonfouling properties, of the PPEGMA brushes could be improved by tailoring the brush density and, to a lesser extent, the molecular weight of the polymer chains. By appropriate decrease of the grafting density, the stability of the brushes in cell culture medium could be improved from less than 1 to more than 7 days, without compromising the nonfouling properties.  相似文献   

9.
Kim S  Healy KE 《Biomacromolecules》2003,4(5):1214-1223
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with peptide cross-linkers to create an artificial extracellular matrix (ECM) amenable for testing hypotheses regarding cell proliferation and migration in three dimensions. Peptide degradable cross-linkers were synthesized by the acrylation of the amine groups of glutamine and lysine residues within peptide sequences potentially cleavable by matrix metalloproteinases synthesized by mammalian cells (e.g., osteoblasts). With the peptide cross-linker, loosely cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, and enzymatic degradation properties were investigated. The peptide-cross-linked P(NIPAAm-co-AAc) hydrogels were pliable and fluidlike at room temperature and could be injected through a small-diameter aperture. The LCST of peptide-cross-linked hydrogel was influenced by the monomer ratio of NIPAAm/AAc but not by cross-linking density within the polymer network. A peptide-cross-linked hydrogel with a 97/3 molar ratio of NIPAAm/AAc exhibited a LCST of approximately 34.5 degrees C. Swelling was influenced by NIPAAm/AAc monomer ratio, cross-linking density, and swelling media; however, all hydrogels maintained more than 90% water even at 37 degrees C. In enzymatic degradation studies, breakdown of the peptide-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on both the concentration of collagenase and the cross-linking density. These results suggest that peptide-cross-linked P(NIPAAm-co-AAc) hydrogels can be tailored to create environmentally-responsive artificial extracellular matrixes that are degraded by proteases.  相似文献   

10.
Temperature- and pH-sensitive random copolymers of N-isopropylacrylamide (NIPAAm) and propylacrylic acid (PAA) were prepared using the reversible addition fragmentation chain transfer (RAFT) polymerization method. The lower critical solution temperatures (LCSTs) (or phase separation temperatures) of the NIPAAm-co-PAA copolymer solutions were measured by the cloud-point method. At slightly acidic conditions, the LCST decreased with increase in PAA content, which suggests that the hydrophobic propyl group of PAA has a greater influence on the LCST than the polar carboxylic acid group at those conditions. An increase of pH led to a significant increase in LCST of the copolymers due to the ionization of the -COOH group. The LCSTs were studied as a function of copolymer composition over the pH range from 5.0 to 7.0. Because the pK(a) of the polymers can be tuned to fall close to neutral pH, these polymer compositions can be designed to have phase transitions triggered near physiological pH or at slightly acidic pH values that fall within acidic gradients found in biology. The NIPAAm-co-PAA copolymers thus display tunable properties that could make them useful in a variety of molecular switching and drug delivery applications where responses to small pH changes are relevant.  相似文献   

11.
Stimuli-responsive polymers are of crucial importance in the design of smart biomaterials. The thermo-responsive triblock copolymers of polycaprolactone (PCL) and poly( N-isopropylacrylamide) (P(NIPAAm)), or P(NIPAAm)- b-PCL- b- P(NIPAAm) copolymers, were synthesized in this work via atom transfer radical polymerization (ATRP). The P(NIPAAm)- b-PCL- b-P(NIPAAm) copolymers were cast by phase inversion in water into porous membranes with well-defined and uniformly distributed pores. The P(NIPAAm) content in the P(NIPAAm)- b-PCL- b- P(NIPAAm) copolymers and the temperature of the aqueous medium for phase inversion could be used to control the pore size and porosity of the membranes. The thermo-responsive characteristics of the membranes were illustrated in the controlled water uptake and temperature-dependent glucose transport through the membranes. These temperature-sensitive membranes with controllable morphology have potential applications in biomedical engineering, drug delivery, and tissue engineering.  相似文献   

12.
Protein-functionalized polymer brushes   总被引:1,自引:0,他引:1  
A new strategy for the preparation of protein-functionalized polymer brushes is reported, which is based on a combination of surface-initiated atom transfer radical polymerization (ATRP), p-nitrophenyl chloroformate activation of the surface hydroxyl groups, and subsequent O(6)-benzylguanine (BG) functionalization. The BG-functionalized brushes are used to chemoselectively immobilize O(6)-alkylguanine-DNA-alkyltransferase (AGT) fusion proteins with a defined orientation and surface density. These protein-modified polymer brushes are attractive candidates for the development of protein microarrays.  相似文献   

13.
Hu F  Neoh KG  Cen L  Kang ET 《Biomacromolecules》2006,7(3):809-816
A new method to PEGylate magnetic nanoparticles with a dense layer of poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) by surface-initiated atom transfer radical polymerization (ATRP) is reported. In this approach, an initiator for ATRP was first immobilized onto the magnetic nanoparticle surface, and then P(PEGMA) was grafted onto the surface of magnetic nanoparticle via copper-mediated ATRP. The modified nanoparticles were subjected to detailed characterization using FTIR, XPS, and TGA. The P(PEGMA)-immobilized nanoparticles dispersed well in aqueous media. The saturation magnetization values of the P(PEGMA)-immobilized nanoparticles were 19 emu/g and 11 emu/g after 2 and 4 h polymerization respectively, compared to 52 emu/g for the pristine magnetic nanoparticles. The response of macrophage cells to pristine and P(PEGMA)-immobilized nanoparticles was compared. The results showed that the macrophage cells are very effective in cleaning up the pristine magnetic nanoparticles. With the P(PEGMA)-immobilized nanoparticles, the amount of nanoparticles internalized into the cells is greatly reduced to <2 pg/cell over a 5 day period. With this amount of nanoparticles uptake, no significant cytotoxicity effects were observed.  相似文献   

14.
To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well‐defined functional polymer brushes were grafted via surface‐initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS‐OH) substrates for surface‐initiated ATRP of (2‐dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen‐quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Biotechnol. Bioeng. 2009;103: 268–281. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of grafted CNCs in aqueous dispersions and as an ultrathin film was evaluated by using light scattering, viscosimetry, and colloidal probe microscopy (CPM). Light transmittance measurements showed temperature-dependent aggregation originating from the different graft densities and molecular weights. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength, as is the case for free poly(NiPAAm) in aqueous solution. Thermal responsive behavior of grafted CNCs in aqueous dispersions was observed by a sharp increase in dispersion viscosity as the temperature approached the LCST. CPM in liquid media for asymmetric systems consisting of ultrathin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on interaction and adhesive forces. The origin of such forces was found to be mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films were observed with the ionic strength of the aqueous solution. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as the main reasons for the less prominent polymer bridging between interacting surfaces.  相似文献   

16.
Primary amine containing copolymer, poly(N,N-dimethylacrylamide-co-N-(3-aminopropyl)methacrylamide hydrochloride) (poly(DMA-co-APMA)), brushes were synthesized on Ti surface by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous conditions. A series of poly(DMA-co-APMA) copolymer brushes on titanium (Ti) surface with different molecular weights, thicknesses, compositions, and graft densities were synthesized by changing the SI-ATRP reaction conditions. Cysteine-functionalized cationic antimicrobial peptide Tet213 (KRWWKWWRRC) was conjugated to the copolymers brushes using a maleimide-thiol addition reaction after initial modification of the grafted chains using 3-maleimidopropionic acid N-hydroxysuccinimide ester. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), and ellipsometry analysis. The conjugation of the Tet213 onto brushes strongly depended on graft density of the brushes at different copolymer brush compositions. The peptide density (peptides/nm(2)) on the surface varied with the initial composition of the copolymer brushes. Higher graft density of the brushes generated high peptide density (pepetide/nm(2)) and lower number of peptides/polymer chain and vice versa. The peptide density and graft density of the chains on surface greatly influenced the antimicrobial activity of peptide grafted polymer brushes against Pseudomonas aeruginosa.  相似文献   

17.
Lou X  Wang C  He L 《Biomacromolecules》2007,8(5):1385-1390
We report here a direct surface-grafting approach to forming DNA-containing polymer shells outside of Au nanoparticles using aqueous atom transfer radical polymerization (ATRP). In this approach, DNA molecules were immobilized on Au particles to introduce ATRP initiators on the surface. The same DNA molecules also acted as particle stabilizers through electrostatic repulsion and allowed particles to stay suspended in water. The immobilized ATRP initiators prompted polymer chain growth under certain conditions to form thick polymer shells outside of the particles. The formation of DNA-polymer hybrids outside of Au nanoparticles was characterized using absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and gel electrophoresis. The presence of thick polymer shells improved particle stability in high ionic strength media, whereas particles with the DNA coating only aggregated. A visible color difference between these two particle solutions was clearly observed, providing the basis for DNA sensing in homogeneous solutions.  相似文献   

18.
"Schizophrenic" diblock copolymers containing nonionic and zwitterionic blocks were prepared with well-controlled molecular weights via atom-transfer radical polymerization (ATRP). In this work, we report a systematic study of how morphological changes of poly(N-isopropylacrylamide)-block-poly(sulfobetaine methacrylate) (PNIPAAm-b-PSBMA) copolymers affect hemocompatibility in human blood solution. The "schizophrenic" behavior of PNIPAAm-b-PSBMA was observed by (1)H NMR, dynamic light scattering (DLS), and turbidity measurement with double morphological transition, exhibiting both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in aqueous solution. Below the UCST of PSBMA block, micelles were obtained with a core of insoluble PSBMA association and a shell of soluble PNIPAAm, whereas the opposite micelle structure was observed above the LCST of PNIPAAm block. In between the UCST and LCST, unimers with both soluble blocks were detected. Hydrodynamic size of prepared polymers and copolymers is determined to illustrate the correlations between intermolecular nonionic/zwitterionic associations and blood compatibility of PNIPAAm, PNIPAAm-b-PSBMA, and PSBMA suspension in human blood. Human fibrinogen adsorption onto the PNIPAAm-b-PSBMA copolymers from single-protein solutions was measured by DLS to determine the nonfouling stability of copolymer suspension. The new nonfouling nature of PNIPAAm-b-PSBMA copolymers was demonstrated to show extremely high anticoagulant activity and antihemolytic activity in human blood over a wide range of explored temperatures from 4 to 40 °C. The temperature-independent blood compatibility of nonionic/zwitterionic block copolymer along with their schizophrenic phase behavior in aqueous solution suggests their potential in blood-contacting applications.  相似文献   

19.
Homogeneous solutions of poly(3-hydroxyoctanoate) (PHO) and the monoacrylate-poly(ethylene glycol) (PEGMA) monomer in chloroform were irradiated with UV light to obtain PEGMA-grafted PHO (PEGMA-g-PHO) copolymers. Variables affecting the degree of grafting (DG), such as the time of UV irradiation and the concentrations of the PEGMA monomer and initiator, were investigated. The PEGMA-g-PHO copolymers were characterized by measuring the water contact angle, molecular weight, thermal transition temperatures and mechanical properties, as well as by nuclear magnetic resonance spectroscopy. The results from all of these measurements indicate that PEGMA groups were present on the PHO polymer. The protein adsorption and platelet adhesion on the PEGMA-g-PHO surfaces were examined using poly(L-lactide) (PLLA) surfaces as the control. The proteins and platelets had a significantly lower tendency to adhere to the PEGMA-g-PHO copolymers than to PLLA. The graft copolymer with a high DG of PEGMA was very effective in reducing the protein adsorption and platelet adhesion and did not activate the platelets. The results obtained in this study suggest that PEGMA-g-PHO copolymers have the potential to be used as blood-contacting devices in a broad range of biomedical applications.  相似文献   

20.
Quaternized poly(vinylpyridine) (PVP) is a polymer with inherent antimicrobial properties that is effective against Gram-positive bacteria, Gram-negative bacteria, viruses, and yeast cells. However, quaternized PVP has poor biocompatibility, which prevents its use in biomaterial applications. Copolymerization was examined as a method of modifying the structure to incorporate biocompatibility. Polyethyleneglycol methyl ether methacrylate (PEGMA) and hydroxyethyl methacrylate (HEMA) are polymers generally known to be biocompatible and thus were chosen as comonomers. Random copolymers of 4-vinylpyridine and PEGMA or HEMA were synthesized via free radical polymerization and quaternized with bromohexane. Copolymer biocompatibility was characterized by interaction with human red blood cells to analyze hemolysis. Hemolysis of human red blood cells was conducted on insoluble films and on water-soluble polymers in a serial dilution study. Hemolysis results demonstrated that blood compatibility does not depend on PEG chain length in PEGMA incorporated copolymers. Results indicate a critical weight ratio of PEGMA to VP in copolymers separating the no-hemolysis regime from 100% hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号