首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compelled activation of Ca(2+) signaling by exposure of zds1Delta strain Saccharomyces cerevisiae cells to external CaCl(2) leads to characteristic physiological consequences such as growth inhibition in the G(2) phase and polarized bud growth. Screening of microbial metabolites for activity alleviating the deleterious physiological effects of external CaCl(2) identified the Hsp90 inhibitor radicicol as an inhibitor of Ca(2+)-signal-dependent cell-cycle regulation in yeast. Radicicol alleviated analogous physiological effects due to the expression of a constitutively active form of calcineurin or overexpression of Swe1, the negative regulatory kinase of the Cdc28-Clb complex. Western blot analysis indicated that radicicol inhibited Ca(2+)-induced accumulation of Swe1 and Cln2.  相似文献   

2.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

3.
Previous studies showed that, in wild-type (MATa) cells, alpha-factor causes an essential rise in cytosolic Ca2+. We show that calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is one target of this Ca2+ signal. Calcineurin mutants lose viability when incubated with mating pheromone, and overproduction of constitutively active (Ca(2+)-independent) calcineurin improves the viability of wild-type cells exposed to pheromone in Ca(2+)-deficient medium. Thus, one essential consequence of the pheromone-induced rise in cytosolic Ca2+ is activation of calcineurin. Although calcineurin inhibits intracellular Ca2+ sequestration in yeast cells, neither increased extracellular Ca2+ nor defects in vacuolar Ca2+ transport bypasses the requirement for calcineurin during the pheromone response. These observations suggest that the essential function of calcineurin in the pheromone response may be distinct from its modulation of intracellular Ca2+ levels. Mutants that do not undergo pheromone-induced cell cycle arrest (fus3, far1) show decreased dependence on calcineurin during treatment with pheromone. Thus, calcineurin is essential in yeast cells during prolonged exposure to pheromone and especially under conditions of pheromone-induced growth arrest. Ultrastructural examination of pheromone-treated cells indicates that vacuolar morphology is abnormal in calcineurin-deficient cells, suggesting that calcineurin may be required for maintenance of proper vacuolar structure or function during the pheromone response.  相似文献   

4.
5.
6.
The eukaryotic cell cycle is regulated at two points, the G1-S and G2-M boundaries. The molecular basis for these regulatory activities has recently been elucidated, in large part by the use of molecular and genetic analyses using unicellular yeast. The molecular characterization of cell-cycle regulation has revealed striking functional conservation among evolutionarily diverse cell types. For many eukaryotic cells, regulation of cell proliferation occurs primarily in the G1 interval. The G1 regulatory step, termed START, requires the activation of a highly conserved p34 protein kinase by association with a functionally redundant family of proteins, the G1 cyclins. Here we review studies using the genetically tractable budding yeast Saccharomyces cerevisiae, which have provided insight into the role of G1 cyclins in the regulation of START.  相似文献   

7.
In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.  相似文献   

8.
Good fungi gone bad: the corruption of calcineurin   总被引:17,自引:0,他引:17  
Calcineurin is a Ca(2+)/calmodulin-activated protein phosphatase that is conserved in eukaryotes, from yeast to humans, and is the conserved target of the immunosuppressive drugs cyclosporin A (CsA) and FK506. Genetic studies in yeast and fungi established the molecular basis of calcineurin inhibition by the cyclophilin A-CsA and FKBP12-FK506 complexes. Calcineurin also functions in fungi to control a myriad of physiological processes including cell cycle progression, cation homeostasis, and morphogenesis. Recent investigations into the molecular mechanisms of pathogenesis in Candida albicans and Cryptococcus neoformans, two fungi that cause life-threatening infections in humans, have revealed an essential role for calcineurin in morphogenesis, virulence, and antifungal drug action. Novel non-immunosuppressive analogs of the calcineurin inhibitors CsA and FK506 that retain antifungal activity have been identified and hold promise as candidate antifungal drugs. In addition, comparisons of calcineurin function in both fungi and humans may identify fungal-specific components of calcineurin-signaling pathways that could be targeted for therapy, as well as conserved elements of calcium signaling events.  相似文献   

9.
M B?dding 《Cell calcium》2001,30(2):141-150
Influx of Ca(2+) represents an important regulatory signal in the process of cell proliferation. However, little is known about how Ca(2+) entry changes during the cell-cycle. Patch-clamp experiments and microfluorimetry show that store-operated Ca(2+) entry was substantially reduced in rat basophilic leukaemia cells cultured for 24h under serum-free conditions. Likewise, retinoic acid treatment blocked Ca(2+) influx activated by store depletion via inositol 1,4,5-trisphosphate. Both procedures are known to arrest cells at the G0/G1 boundary of the cell-cycle and induced a reduction in 5-bromo 2'-deoxyuridine incorporation into DNA. Ca(2+) release from the stores remained unaltered and two types of K(+) currents were not affected in cells after serum starvation. The specific reduction in Ca(2+) entry was not detected when using aphidicolin, 5-fluorouracil or thymidine to synchronise the cell-cycle. These data suggest that store-operated Ca(2+) influx changed during cell-cycle progression which might have important implications for cell growth.  相似文献   

10.
An inappropriate activation of a signaling pathway in yeast often has a deleterious physiological effect and causes various defects, including growth defects. In a certain genetic background (deltazds1) of Saccharomyces cerevisiae, the cell-cycle progression in G2 is specifically blocked in the medium with CaCl2 by the hyperactivation of the Ca2+-signaling pathways. Here, we developed a novel drug screening procedure designed to detect the active compounds that specifically attenuate the Ca2+-signaling activity on the basis of the ability to abrogate the growth defect of the cells suffering from the hyperactivated Ca2+ signal. Using known calcineurin inhibitors as model compounds, we have established the screening conditions for the drugs that suppress the Ca2+-induced growth inhibition. An indicator strain with an increased drug sensitivity was constructed with a syr1/erg3 null mutation.  相似文献   

11.
12.
Universal protein networks conserved from bacteria to animals dictate the core functions of cells. Inorganic pyrophosphatase (IPP) is an essential enzyme that plays a pivotal role in a broad spectrum of cellular biosynthetic reactions such as amino acid, nucleotide, polysaccharide, and fatty acid biosynthesis. However, the in vivo cellular regulation mechanisms of IPP and another key metabolic enzyme, phosphoglucomutase (PGM), remain unknown. This study aimed to examine the universal protein regulatory network by utilizing genome sequences, yeast proteomic data, and phosphoryl-transfer experiments. Here we report a novel human protein, henceforth referred to as calphoglin, which interacts with IPP and activates it. Calphoglin enhances PGM activity through the activated IPP and more directly on its own. Protein structure and assembly, catalytic function, and ubiquitous cellular localization of the calphoglin (-IPP-PGM) complex were conserved among Escherichia coli, yeast, and mammals. In the rat brain, calphoglin mRNA was enriched in the hippocampus and the cerebellum. Further, the linkage of the calphoglin complex to calcium signaling was demonstrated by its interactive co-localization within the calmodulin/calcineurin signaling complex, by Ca(2+)-binding and Ca(2+)-controlled activity of calphoglin-IPP, and by calphoglin-induced enhancement of microsomal Ca(2+) uptake. Collectively, these results suggest that the calphoglin complex is a common mechanism utilized in mediating bacterial cell metabolism and Ca(2+)/calmodulin/calcineurin-dependent mammalian cell activation. This is the first report of an activator of IPP and PGM, a function novel to proteins.  相似文献   

13.
We have isolated a cDNA clone encoding a homolog of mammalian calcineurin B (the regulatory subunit of calmodulin-dependent protein phosphatase) by screening a cDNA expression library of Saccharomyces cerevisiae with antiserum against bovine calcineurin B. The yeast calcineurin B homolog (YCNB) is composed of 175 amino acids with a calculated molecular mass of 19,639 daltons and contains four putative Ca(2+)-binding domains. The amino-acid alignment of YCNB with human calcineurin B demonstrates 53% sequence identity and 82% homology. Southern blot analysis indicates that the gene for YCNB is a single-copy gene. Thus, yeast calmodulin-dependent protein phosphatase apparently has a heterodimeric structure similar to that of the enzyme in mammalians.  相似文献   

14.
Calcineurin is a conserved Ca2+/calmodulin-dependent protein phosphatase that plays a critical role in Ca(2+)-mediated signaling in many cells. Yeast cells lacking functional calcineurin (cna1 cna2 or cnb1 mutants) display growth defects under specific environmental conditions, for example, in the presence of high concentrations of Na+, Li+, Mn2+, or OH- but are indistinguishable from wild-type cells under standard culture conditions. To characterize regulatory pathways that may overlap with calcineurin, we performed a synthetic lethal screen to identify mutants that require calcineurin on standard growth media. The characterization of one such mutant, cnd1-8, is presented. The CND1 gene was cloned, and sequence analysis predicts that it encodes a novel protein 1,876 amino acids in length with multiple membrane-spanning domains. CND1 is identical to the gene identified previously as FKS1, ETG1, and CWH53, cnd1 mutants are sensitive to FK506 and cyclosporin A and exhibit slow growth that is improved by the addition of osmotic stabilizing agents. This osmotic agent-remedial growth defect and microscopic evidence of spontaneous cell lysis in cnd1 cultures suggest that cell integrity is compromised in these mutants. Mutations in the genes for yeast protein kinase C (pkc1) and a MAP kinase (mpk1/slt2) disrupt a Ca(2+)-dependent signaling pathway required to maintain a normal cell wall and cell integrity. We show that pkc1 and mpk1/slt2 growth defects are more severe in the absence of calcineurin function and less severe in the presence of a constitutively active form of calcineurin. These observations suggest that calcineurin and protein kinase C perform independent but physiologically related functions in yeast cells. We show that several mutants that lack a functional vacuolar H(+)-ATPase (vma) require calcineurin for vegetative growth. We discuss possible roles for calcineurin in regulating intracellular ion homeostasis and in maintaining cell integrity.  相似文献   

15.
Ca2+ ATPases deplete the cytosol of Ca2+ ions and are crucial to cellular Ca2+ homeostasis. The PMC1 gene of Saccharomyces cerevisiae encodes a vacuole membrane protein that is 40% identical to the plasma membrane Ca2+ ATPases (PMCAs) of mammalian cells. Mutants lacking PMC1 grow well in standard media, but sequester Ca2+ into the vacuole at 20% of the wild-type levels. pmc1 null mutants fail to grow in media containing high levels of Ca2+, suggesting a role of PMC1 in Ca2+ tolerance. The growth inhibitory effect of added Ca2+ requires activation of calcineurin, a Ca2+ and calmodulin-dependent protein phosphatase. Mutations in calcineurin A or B subunits or the inhibitory compounds FK506 and cyclosporin A restore growth of pmc1 mutants in high Ca2+ media. Also, growth is restored by recessive mutations that inactivate the high-affinity Ca(2+)-binding sites in calmodulin. This mutant calmodulin has apparently lost the ability to activate calcineurin in vivo. These results suggest that activation of calcineurin by Ca2+ and calmodulin can negatively affect yeast growth. A second Ca2+ ATPase homolog encoded by the PMR1 gene acts together with PMC1 to prevent lethal activation of calcineurin even in standard (low Ca2+) conditions. We propose that these Ca2+ ATPase homologs are essential in yeast to deplete the cytosol of Ca2+ ions which, at elevated concentrations, inhibits yeast growth through inappropriate activation of calcineurin.  相似文献   

16.
Ca2+ signaling pathways play important roles to complete meiosis from metaphase II arrest in vertebrate oocytes. However, less is known about the molecular mechanism of completion of meiosis in Drosophila females. Here, we provide direct evidence that calcineurin, a Ca2+/calmodulin (CaM)-dependent phosphatase, is essential for meiotic progression beyond metaphase I in Drosophila oocytes. Oocytes from germline clones lacking CanB2, a calcineurin regulatory subunit B, failed to complete meiosis after egg activation, and laid eggs exhibited a meiotic arrested anaphase I chromosome configuration. Genetic analyses suggest that calcineurin activity is regulated by Sarah (Sra), a family member of regulators of calcineurin (RCANs), through a Sra phosphorylation-dependent mechanism. Our results support a view in which the phosphorylation of Sra not only acts to relieve the inhibitory effects of Sra, but also acts to activate calcineurin, thus explaining the role of RCAN proteins as positive regulators of calcineurin.  相似文献   

17.
18.
19.
20.
By using an assay specific for detection of calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase, this enzyme was purified approximately 5,000-fold from extracts of the yeast Saccharomyces cerevisiae. Cna1p and Cna2p, the products of two yeast genes encoding the catalytic (A) subunits of calcineurin, were major constituents of the purified fraction. A third prominent component of apparent molecular mass 16 kDa displayed several properties, including ability to bind 45Ca2+, that are characteristic of the regulatory (B) subunit of mammalian calcineurin and was recognized by an antiserum raised against bovine calcineurin. These antibodies were used to isolate the structural gene (CNB1) encoding this protein from a yeast expression library in the vector lambda gt11. The nucleotide sequence of CNB1 predicted a polypeptide similar in length and highly related in amino acid sequence (56% identity) to the mammalian calcineurin B subunit. Like its counterpart in higher cells, yeast Cnb1p was myristoylated at its N terminus. Mutants lacking Cnb1p, or all three calcineurin subunits (Cna1p, Cna2p, and Cnb1p), were viable. Extracts of cnb1 delta mutants contained no detectable calcineurin activity, even though Cna1p and Cna2p were present at normal levels, suggesting that the B subunit is required for full enzymatic activity in vitro. As was observed previously for MATa cna1 cna2 double mutants, MATa cnb1 mutants were defective in their ability to recover from alpha-factor-induced growth arrest. Thus, the B subunit also is required for the function of calcineurin in promoting adaptation of haploid yeast cells to pheromone in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号