首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Pauler DK  Laird NM 《Biometrics》2000,56(2):464-472
In clinical trials of a self-administered drug, repeated measures of a laboratory marker, which is affected by study medication and collected in all treatment arms, can provide valuable information on population and individual summaries of compliance. In this paper, we introduce a general finite mixture of nonlinear hierarchical models that allows estimates of component membership probabilities and random effect distributions for longitudinal data arising from multiple subpopulations, such as from noncomplying and complying subgroups in clinical trials. We outline a sampling strategy for fitting these models, which consists of a sequence of Gibbs, Metropolis-Hastings, and reversible jump steps, where the latter is required for switching between component models of different dimensions. Our model is applied to identify noncomplying subjects in the placebo arm of a clinical trial assessing the effectiveness of zidovudine (AZT) in the treatment of patients with HIV, where noncompliance was defined as initiation of AZT during the trial without the investigators' knowledge. We fit a hierarchical nonlinear change-point model for increases in the marker MCV (mean corpuscular volume of erythrocytes) for subjects who noncomply and a constant mean random effects model for those who comply. As part of our fully Bayesian analysis, we assess the sensitivity of conclusions to prior and modeling assumptions and demonstrate how external information and covariates can be incorporated to distinguish subgroups.  相似文献   

2.
Population-Based Reversible Jump Markov Chain Monte Carlo   总被引:2,自引:0,他引:2  
We present an extension of population-based Markov chain MonteCarlo to the transdimensional case. A major challenge is thatof simulating from high- and transdimensional target measures.In such cases, Markov chain Monte Carlo methods may not adequatelytraverse the support of the target; the simulation results willbe unreliable. We develop population methods to deal with suchproblems, and give a result proving the uniform ergodicity ofthese population algorithms, under mild assumptions. This resultis used to demonstrate the superiority, in terms of convergencerate, of a population transition kernel over a reversible jumpsampler for a Bayesian variable selection problem. We also givean example of a population algorithm for a Bayesian multivariatemixture model with an unknown number of components. This isapplied to gene expression data of 1000 data points in six dimensionsand it is demonstrated that our algorithm outperforms some competingMarkov chain samplers. In this example, we show how to combinethe methods of parallel chains (Geyer, 1991), tempering (Geyer& Thompson, 1995), snooker algorithms (Gilks et al., 1994),constrained sampling and delayed rejection (Green & Mira,2001).  相似文献   

3.
Bayesian model discrimination for multiple strata capture-recapture data   总被引:2,自引:0,他引:2  
King  R.; Brooks  S. P. 《Biometrika》2002,89(4):785-806
  相似文献   

4.
Markov chain Monte Carlo methods for switching diffusion models   总被引:1,自引:0,他引:1  
  相似文献   

5.
    
F. Perron  K. Mengersen 《Biometrics》2001,57(2):518-528
Nonparametric modeling is an indispensable tool in many applications and its formulation in an hierarchical Bayesian context, using the entire posterior distribution rather than particular expectations, increases its flexibility. In this article, the focus is on nonparametric estimation through a mixture of triangular distributions. The optimality of this methodology is addressed and bounds on the accuracy of this approximation are derived. Although our approach is more widely applicable, we focus for simplicity on estimation of a monotone nondecreasing regression on [0, 1] with additive error, effectively approximating the function of interest by a function having a piecewise linear derivative. Computationally accessible methods of estimation are described through an amalgamation of existing Markov chain Monte Carlo algorithms. Simulations and examples illustrate the approach.  相似文献   

6.
A two-component model for counts of infectious diseases   总被引:1,自引:0,他引:1  
We propose a stochastic model for the analysis of time series of disease counts as collected in typical surveillance systems on notifiable infectious diseases. The model is based on a Poisson or negative binomial observation model with two components: a parameter-driven component relates the disease incidence to latent parameters describing endemic seasonal patterns, which are typical for infectious disease surveillance data. An observation-driven or epidemic component is modeled with an autoregression on the number of cases at the previous time points. The autoregressive parameter is allowed to change over time according to a Bayesian changepoint model with unknown number of changepoints. Parameter estimates are obtained through the Bayesian model averaging using Markov chain Monte Carlo techniques. We illustrate our approach through analysis of simulated data and real notification data obtained from the German infectious disease surveillance system, administered by the Robert Koch Institute in Berlin. Software to fit the proposed model can be obtained from http://www.statistik.lmu.de/ approximately mhofmann/twins.  相似文献   

7.
We present a statistical method, and its accompanying algorithms, for the selection of a mathematical model of the gating mechanism of an ion channel and for the estimation of the parameters of this model. The method assumes a hidden Markov model that incorporates filtering, colored noise and state-dependent white excess noise for the recorded data. The model selection and parameter estimation are performed via a Bayesian approach using Markov chain Monte Carlo. The method is illustrated by its application to single-channel recordings of the K+ outward-rectifier in barley leaf.Acknowledgement The authors thank Sake Vogelzang, Bert van Duijn and Bert de Boer for their helpful advice and useful comments and suggestions.  相似文献   

8.
9.
10.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.  相似文献   

11.
A Bayesian CART algorithm   总被引:3,自引:0,他引:3  
  相似文献   

12.
Adaptive sampling for Bayesian variable selection   总被引:1,自引:0,他引:1  
Nott  David J.; Kohn  Robert 《Biometrika》2005,92(4):747-763
  相似文献   

13.
  总被引:2,自引:0,他引:2  
King R  Brooks SP 《Biometrics》2008,64(3):816-824
Summary .   We consider the estimation of the size of a closed population, often of interest for wild animal populations, using a capture–recapture study. The estimate of the total population size can be very sensitive to the choice of model used to fit to the data. We consider a Bayesian approach, in which we consider all eight plausible models initially described by Otis et al. (1978, Wildlife Monographs 62, 1–135) within a single framework, including models containing an individual heterogeneity component. We show how we are able to obtain a model-averaged estimate of the total population, incorporating both parameter and model uncertainty. To illustrate the methodology we initially perform a simulation study and analyze two datasets where the population size is known, before considering a real example relating to a population of dolphins off northeast Scotland.  相似文献   

14.
    
King R  Brooks SP  Coulson T 《Biometrics》2008,64(4):1187-1195
SUMMARY: We consider the issue of analyzing complex ecological data in the presence of covariate information and model uncertainty. Several issues can arise when analyzing such data, not least the need to take into account where there are missing covariate values. This is most acutely observed in the presence of time-varying covariates. We consider mark-recapture-recovery data, where the corresponding recapture probabilities are less than unity, so that individuals are not always observed at each capture event. This often leads to a large amount of missing time-varying individual covariate information, because the covariate cannot usually be recorded if an individual is not observed. In addition, we address the problem of model selection over these covariates with missing data. We consider a Bayesian approach, where we are able to deal with large amounts of missing data, by essentially treating the missing values as auxiliary variables. This approach also allows a quantitative comparison of different models via posterior model probabilities, obtained via the reversible jump Markov chain Monte Carlo algorithm. To demonstrate this approach we analyze data relating to Soay sheep, which pose several statistical challenges in fully describing the intricacies of the system.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Inoue LY  Thall PF  Berry DA 《Biometrics》2002,58(4):823-831
A sequential Bayesian phase II/III design is proposed for comparative clinical trials. The design is based on both survival time and discrete early events that may be related to survival and assumes a parametric mixture model. Phase II involves a small number of centers. Patients are randomized between treatments throughout, and sequential decisions are based on predictive probabilities of concluding superiority of the experimental treatment. Whether to stop early, continue, or shift into phase III is assessed repeatedly in phase II. Phase III begins when additional institutions are incorporated into the ongoing phase II trial. Simulation studies in the context of a non-small-cell lung cancer trial indicate that the proposed method maintains overall size and power while usually requiring substantially smaller sample size and shorter trial duration when compared with conventional group-sequential phase III designs.  相似文献   

16.
    
  相似文献   

17.
    
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.  相似文献   

18.
  总被引:2,自引:0,他引:2  
A technique is presented whereby a marker map can be constructed using resource family data with an entire class of missing data. The focus is on a half-sib design where there is only information on a single parent and its progeny. A Bayesian approach is utilised with solutions obtained via a Markov chain Monte Carlo algorithm. Features of the approach include the capacity to determine parameters for the ungenotyped dam population, the ability to incorporate published information and its reliability, and the production of posterior densities and the consequent deduction of a wide range of inferences. These features are demonstrated through the analysis of simulated and experimental data.  相似文献   

19.
  总被引:1,自引:0,他引:1  
King R  Brooks SP 《Biometrics》2002,58(4):841-851
Catchpole et al. (1998, Biometrics 54, 33-46) provide a novel scheme for integrating both recovery and recapture data analyses and derive sufficient statistics that facilitate likelihood computations. In this article, we demonstrate how their efficient likelihood expression can facilitate Bayesian analyses of these kinds of data and extend their methodology to provide a formal framework for model determination. We consider in detail the issue of model selection with respect to a set of recapture/recovery histories of shags (Phalacrocorax aristotelis) and determine, from the enormous range of biologically plausible models available, which best describe the data. By using reversible jump Markov chain Monte Carlo methodology, we demonstrate how this enormous model space can be efficiently and effectively explored without having to resort to performing an infeasibly large number of pairwise comparisons or some ad hoc stepwise procedure. We find that the model used by Catchpole et al. (1998) has essentially zero posterior probability and that, of the 477,144 possible models considered, over 60% of the posterior mass is placed on three neighboring models with biologically interesting interpretations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号