首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
To examine the mechanism of EIN3-mediated gene expression by ethylene, the expression patterns of ethylene-inducible genes by ethylene were monitored in Col-0 and ethylene signaling mutants. In Col-0, the inducibility of ACC oxidase by ethylene in light-grown seedlings was much higher than in dark-grown seedlings. While the expression of ACC oxidase was highly increased by ethylene not only in Col-0 but in ein3-1 under light treatment, this pattern was completely abrogated in etiolated ein3-1 seedlings, suggesting the expression of EIN3-mediated ACC oxidase genes could be affected by light. To check if the level of EIN3 and EIL1 was regulated by light, cell-free degradation assays were performed. This resulted in the rapid degradation of these proteins within 1h after adding dark-grown cell extracts and this degradation was retarded by light-grown extracts. Here, we propose that light may act as a negative regulator in the destabilization of EIN3/EIL1.  相似文献   

2.
3.
4.
Ethylene-insensitive3(EIN3)和 EIN3-like1(EIL1)蛋白是乙烯信号转导途径中一类重要的核转录因子。花青素是植物体中的一类水溶性天然色素,在植物的许多生理过程中起重要作用。本研究以拟南芥双突变体ein3-1eil1-3为研究材料,通过RT-PCR技术确定了拟南芥双突变体ein3-1eil1-3中EIN3和EIL1基因均已被敲除,单突变体ein3-1中的EIN3基因被敲除。通过肉眼定性观察发现突变体ein3-1eil1-3的种子和叶片内均呈紫色。通过紫外分光光度计定量分析发现,花青素积累量也明显比突变体ein3-1和野生型多。通过GUS染色发现EIN3启动子主要在花、柱头、成熟花粉、种子胚和果荚等组织中有较强的表达。这与突变体ein3-1eil1-3的种子和叶片内均呈紫色并花青素含量增高一致。因此,拟南芥转录因子EIN3可能与EIL1共同参与抑制花青素的合成。  相似文献   

5.
6.
7.
8.
9.
10.
Ethylene-insensitive3(EIN3)和EIN3-like(EIL)蛋白是乙烯信号转导途径中重要的核转录因子。目前已经从多种高等植物中分离得到EIN3/EILs,其属于一个小的转录因子家族。这类转录因子在氨基酸序列N端高度保守,包括酸性氨基酸区、脯氨酸富集区、碱性氨基酸簇等涉及DNA结合的重要结构域,它们通过直接结合到初级乙烯反应元件(PERE)上来调节相关基因的表达。EIN3/EILs转录因子家族不同成员在不同物种间时空表达特性、表达调控模式等均有所差异,各成员主要参与调节植物对乙烯的反应,包括影响幼苗的"三重反应"、植株的生长发育等,并作为乙烯与其他信号间交叉点发挥重要作用。就近几年关于高等植物EIN3/EILs转录因子的研究进展进行综述,以期为后续研究提供理论依据。  相似文献   

11.
12.
Ethylene signalling regulates plant growth and development. However, its roles in salt stress response are less known. Here we studied functions of EIN2, a central membrane protein of ethylene signalling, and its interacting protein ECIP1 in salt stress responses. Mutation of EIN2 led to extreme salt sensitivity as revealed by phenotypic and physiological changes, and overexpression of C-terminus of EIN2 suppressed salt sensitivity in ein2-5, indicating that EIN2 is required for salt tolerance. Downstream components EIN3 and EIL1 are also essential for salt tolerance because ein3-1eil1-1 double mutant showed extreme salt-sensitive phenotype. A MA3 domain-containing protein ECIP1 was further identified to interact with EIN2 in yeast two-hybrid assay and GST pull-down assay. Loss-of-function of ECIP1 resulted in enhanced ethylene response but altered salt response during seed germination and plant growth. Double mutant analysis revealed that ein2-1 was epistatic to ecip1, and ecip1 mutation partially suppressed ethylene-insensitivity of etr2-1 and ein4-1. These studies strengthen that interactions between ECIP1 and EIN2 or ethylene receptors regulate ethylene response and stress response.  相似文献   

13.
14.
15.
16.
17.
18.
The thermodynamic properties and DNA binding ability of the N-terminal DNA binding domains of interferon regulatory factors IRF-1 (DBD1) and IRF-3 (DBD3) were studied using microcalorimetric and optical methods. DBD3 is significantly more stable than DBD1: at 20 degrees C the Gibbs energy of unfolding of DBD3 is -28.6 kJ/mol, which is 2 times larger than that of DBD1, -14.9 kJ/mol. Fluorescence anisotropy titration experiments showed that at this temperature the association constants with the PRDI binding site are 1.1 x 10(6) M(-)(1) for DBD1 and 3.6 x 10(6) M(-)(1) for DBD3, corresponding to Gibbs energies of association of -34 and -37 kJ/mol, respectively. However, the larger binding energy of DBD3 is due to its larger electrostatic component, while its nonelectrostatic component is smaller than that of DBD1. Therefore, DBD1 appears to have more sequence specificity than DBD3. Binding of DBD1 to target DNA is characterized by a substantially larger negative enthalpy than binding of DBD3, implying that the more flexible structure of DBD1 forms tighter contacts with DNA than the more rigid structure of DBD3. Thus, the strength of the DBDs' specific association with DNA is inversely related to the stability of the free DBDs.  相似文献   

19.
20.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号