首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
mRNA-specific polyadenylation can be assayed in vitro by using synthetic RNAs that end at or near the natural cleavage site. This reaction requires the highly conserved sequence AAUAAA. At least two distinct nuclear components, an AAUAAA specificity factor and poly(A) polymerase, are required to catalyze the reaction. In this study, we identified structural features of the RNA substrate that are critical for mRNA-specific polyadenylation. We found that a substrate that contained only 11 nucleotides, of which the first six were AAUAAA, underwent AAUAAA-specific polyadenylation. This is the shortest substrate we have used that supports polyadenylation: removal of a single nucleotide from either end of this RNA abolished the reaction. Although AAUAAA appeared to be the only strict sequence requirement for polyadenylation, the number of nucleotides between AAUAAA and the 3' end was critical. Substrates with seven or fewer nucleotides beyond AAUAAA received poly(A) with decreased efficiency yet still bound efficiently to specificity factor. We infer that on these shortened substrates, poly(A) polymerase cannot simultaneously contact the specificity factor bound to AAUAAA and the 3' end of the RNA. By incorporating 2'-deoxyuridine into the U of AAUAAA, we demonstrated that the 2' hydroxyl of the U in AAUAAA was required for the binding of specificity factor to the substrate and hence for poly(A) addition. This finding may indicate that at least one of the factors involved in the interaction with AAUAAA is a protein.  相似文献   

3.
The importance of sugar contacts for the sequence-specific recognition that occurs during polyadenylation of mRNAs was investigated with chemically synthesized substrates containing 2'-O-CH3 groups at selected riboses. An RNA (5'-CUGCAAUAAACAAGU-UAA-3') with 2'-O-CH3 ribose at each nucleotide except for the AAUAAA sequence and 3'-terminal adenosine was efficiently polyadenylated in vitro. Methylation of single riboses within AAUAAA inhibited both poly(A) addition and binding of the specificity factor, but the magnitude of inhibition varied greatly at different nucleotides. Nucleotides that showed sensitivity to base substitutions did not necessarily show sensitivity to ribose methylation, and vice versa. The data indicate that the specificity factor interacts with AAUAAA through RNA-protein contacts involving essential recognition of both sugars and bases at different nucleotide positions.  相似文献   

4.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

5.
Ammonium sulfate fractionation of a Saccharomyces cerevisiae whole-cell extract yielded a preparation which carried out correct and efficient endonucleolytic cleavage and polyadenylation of yeast precursor mRNA substrates corresponding to a variety of yeast genes. These included CYC1 (iso-1-cytochrome c), HIS4 (histidine biosynthesis), GAL7 (galactose-1-phosphate uridyltransferase), H2B2 (histone H2B2), PRT2 (a protein of unknown function), and CBP1 (cytochrome b mRNA processing). The reaction processed these pre-mRNAs with varying efficiencies, with cleavage and polyadenylation exceeding 70% in some cases. In each case, the poly(A) tail corresponded to the addition of approximately 60 adenosine residues, which agrees with the usual length of poly(A) tails formed in vivo. Addition of cordycepin triphosphate or substitution of CTP for ATP in these reactions inhibited polyadenylation but not endonucleolytic cleavage and resulted in accumulation of the cleaved RNA product. Although this system readily generated yeast mRNA 3' ends, no processing occurred on a human alpha-globin pre-mRNA containing the highly conserved AAUAAA polyadenylation signal of higher eucaryotes. This sequence and adjacent signals used in mammalian systems are thus not sufficient to direct mRNA 3' end formation in yeast. Despite the lack of a highly conserved nucleotide sequence signal, the same purified fraction processed the 3' ends of a variety of unrelated yeast pre-mRNAs, suggesting that endonuclease cleavage and polyadenylation may produce the mature 3' ends of all mRNAs in S. cerevisiae.  相似文献   

6.
7.
We have analyzed several properties of the complex that forms between RNAs that end at the poly(A) site of simian virus 40 late mRNA and factors present in a HeLa cell nuclear extract. Formation of this polyadenylation-specific complex requires the sequence AAUAAA and a proximal 3' end. We have observed three changes in the polyadenylation complex early in the addition of the poly(A) tail. First, the complex becomes heparin sensitive after the addition of approximately 10 adenosines. Second, a 68-kilodalton protein present in the complex, which can be cross-linked by UV light to the RNA before polyadenylation has begun, no longer can be cross-linked after approximately 10 adenosines have been added. Third, after 30 adenosines have been added, the AAUAAA sequence becomes accessible to a complementary oligonucleotide and RNase H. This accessibility gradually increases with longer poly(A) tail lengths until, with the addition of 60 A's, all substrates are accessible at AAUAAA. Sheets and Wickens (Genes Dev. 3:1401-1412, 1989) have recently demonstrated two phases in the addition of a poly(A) tail: the first requires AAUAAA, whereas the second is independent of AAUAAA but requires a short oligo(A) primer. The data reported here further support a biphasic model for poly(A) addition and may indicate disengagement of specific factors from AAUAAA after the initiation phase.  相似文献   

8.
Complexes form between processing factors present in a crude nuclear extract from HeLa cells and a simian virus 40 (SV40) late pre-mRNA which spans the polyadenylation [poly(A)] site. A specific 'pre-cleavage complex' forms on the pre-mRNA before cleavage. Formation of this complex requires the highly conserved sequence AAUAAA: it is prevented by mutations in AAUAAA, and by annealing DNA oligonucleotides to that sequence. After cleavage, the 5' half-molecule is found in a distinct 'post-cleavage complex'. In contrast, the 3' half-molecule is released. After cleavage and polyadenylation, polyadenylated RNA also is released. De novo formation of the post-cleavage complex requires AAUAAA and a nearby 3' terminus. Competition experiments suggest that a component which recognizes AAUAAA is required for formation of both pre- and post-cleavage complexes.  相似文献   

9.
Analysis of RNA cleavage at the adenovirus-2 L3 polyadenylation site.   总被引:31,自引:8,他引:23       下载免费PDF全文
Processing at the L3 polyadenylation site of human adenovirus-2 involves endonucleolytic cleavage generating the 3' terminal sequence -UAOH to which adenosine residues are added. This dinucleotide is 19 nucleotides downstream of the AAUAAA polyadenylation signal. The ATP analog cordycepin triphosphate (3' dATP) inhibits poly(A) synthesis, but precursor RNA is processed to give a product terminating in -UAAH. Addition of only one adenosine analog demonstrates that the initial poly(A) tract is synthesized by polymerization of single residues rather than by ligation of preformed poly(A). Cleavage is not coupled to polyadenylation since incubation with an ATP analog containing a non-hydrolyzable alpha--beta bond generates a product with a 3' terminus coincident with the -UAOH) addition site. Addition of this accurately processed RNA to a nuclear extract results in efficient polyadenylation, suggesting that downstream sequences are not required for synthesis of the poly(A) tract. Finally, processing at the L3 poly(A) site may involve both endonucleolytic and exonucleolytic activities.  相似文献   

10.
11.
12.
13.
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.  相似文献   

14.
Recent in vivo studies have identified specific sequences between 56 and 93 nucleotides upstream of a polyadenylation [poly(A)] consensus sequence, AAUAAA, in human immunodeficiency virus type 1 (HIV-1) that affect the efficiency of 3'-end processing at this site (A. Valsamakis, S. Zeichner, S. Carswell, and J. C. Alwine, Proc. Natl. Acad. Sci. USA 88:2108-2112, 1991). We have used HeLa cell nuclear extracts and precursor RNAs bearing the HIV-1 poly(A) signal to study the role of upstream sequences in vitro. Precursor RNAs containing the HIV-1 AAUAAA and necessary upstream (U3 region) and downstream (U5 region) sequences directed accurate cleavage and polyadenylation in vitro. The in vitro requirement for upstream sequences was demonstrated by using deletion and linker substitution mutations. The data showed that sequences between 56 and 93 nucleotides upstream of AAUAAA, which were required for efficient polyadenylation in vivo, were also required for efficient cleavage and polyadenylation in vitro. This is the first demonstration of the function of upstream sequences in vitro. Previous in vivo studies suggested that efficient polyadenylation at the HIV-1 poly(A) signal requires a spacing of at least 250 nucleotides between the 5' cap site and the AAUAAA. Our in vitro analyses indicated that a precursor containing the defined upstream and downstream sequences was efficiently cleaved at the polyadenylation site when the distance between the 5' cap and the AAUAAA was reduced to at least 140 nucleotides, which is less than the distance predicted from in vivo studies. This cleavage was dependent on the presence of the upstream element.  相似文献   

15.
16.
17.
18.
Formation of the 3' termini of mRNAs in animal cells involves endonucleolytic cleavage of a pre-mRNA, followed by polyadenylation of the newly formed end. Here we demonstrate that, during cleavage in vitro, the highly conserved AAUAAA sequence of the pre-mRNA forms a complex with a factor present in a crude nuclear extract. This complex is required for cleavage and polyadenylation. It normally is transient, but is very stable on cleaved RNA to which a single terminal cordycepin residue has been added. The complex can form either during the cleavage reaction, or on a synthetic RNA that ends at the polyadenylation site. Mutations which prevent cleavage also prevent complex formation. The complex dissociates during or after polyadenylation, enabling the released activities to catalyze a second round of cleavage.  相似文献   

19.
Cai Z  Liang TJ  Luo G 《Journal of virology》2004,78(7):3633-3643
Replication of nearly all RNA viruses depends on a virus-encoded RNA-dependent RNA polymerase (RdRp). Our earlier work found that purified recombinant hepatitis C virus (HCV) RdRp (NS5B) was able to initiate RNA synthesis de novo by using purine (A and G) but not pyrimidine (C and U) nucleotides (G. Luo et al., J. Virol. 74:851-863, 2000). For most human RNA viruses, the initiation nucleotides of both positive- and negative-strand RNAs were found to be either an adenylate (A) or guanylate (G). To determine the nucleotide used for initiation and control of HCV RNA replication, a genetic mutagenesis analysis of the nucleotides at the very 5' and 3' ends of HCV RNAs was performed by using a cell-based HCV replicon replication system. Either a G or an A at the 5' end of HCV genomic RNA was able to efficiently induce cell colony formation, whereas a nucleotide C at the 5' end dramatically reduced the efficiency of cell colony formation. Likewise, the 3'-end nucleotide U-to-C mutation did not significantly affect the efficiency of cell colony formation. In contrast, a U-to-G mutation at the 3' end caused a remarkable decrease in cell colony formation, and a U-to-A mutation resulted in a complete abolition of cell colony formation. Sequence analysis of the HCV replicon RNAs recovered from G418-resistant Huh7 cells revealed several interesting findings. First, the 5'-end nucleotide G of the replicon RNA was changed to an A upon multiple rounds of replication. Second, the nucleotide A at the 5' end was stably maintained among all replicon RNAs isolated from Huh7 cells transfected with an RNA with a 5'-end A. Third, initiation of HCV RNA replication with a CTP resulted in a >10-fold reduction in the levels of HCV RNAs, suggesting that initiation of RNA replication with CTP was very inefficient. Fourth, the 3'-end nucleotide U-to-C and -G mutations were all reverted back to a wild-type nucleotide U. In addition, extra U and UU residues were identified at the 3' ends of revertants recovered from Huh7 cells transfected with an RNA with a nucleotide G at the 3' end. We also determined the 5'-end nucleotide of positive-strand RNA of some clinical HCV isolates. Either G or A was identified at the 5' end of HCV RNA genome depending on the specific HCV isolate. Collectively, these findings demonstrate that replication of positive-strand HCV RNA was preferentially initiated with purine nucleotides (ATP and GTP), whereas the negative-strand HCV RNA replication is invariably initiated with an ATP.  相似文献   

20.
Using 3 overlapping cDNA clones we have determined the nucleotide sequence of chicken histone H5 mRNA. The mRNA does not contain the 23 base conserved sequence element that is present at the 3' end of cell-cycle regulated histone mRNAs. Although the RNA is polyadenylated it lacks the 3' AAUAAA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号