首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renal inward rectifying potassium channel Kir1.1 plays key roles in regulating electrolyte homeostasis and blood pressure. Loss-of-function mutations in the channel cause a life-threatening salt and water balance disorder in infants called antenatal Bartter syndrome (ABS). Of more than 30 ABS mutations identified, approximately half are located in the intracellular domain of the channel. The mechanisms underlying channel dysfunction for most of these mutations are unknown. By mapping intracellular mutations onto an atomic model of Kir1.1, we found that several of these are localized to a phylogenetically ancient immunoglobulin (Ig)-like domain (IgLD) that has not been characterized previously, prompting us to examine this structure in detail. The IgLD is assembled from two ?-pleated sheets packed face-to-face, creating a ?-sheet interface, or core, populated by highly conserved side chains. Thermodynamic calculations on computationally mutated channels suggest that IgLD core residues are among the most important residues for determining cytoplasmic domain stability. Consistent with this notion, we show that two ABS mutations (A198T and Y314C) located within the IgLD core impair channel biosynthesis and trafficking in mammalian cells. A fraction of core mutant channels reach the cell surface, but are electrically silent due to closure of the helix-bundle gate. Compensatory mutation-induced rescue of channel function revealed that IgLD core mutants fail to rectify. Our study sheds new light on the pathogenesis of ABS and establishes the IgLD as an essential structure within the Kir channel family.  相似文献   

2.
The ROMK1 (Kir 1.1a) channel is formed by a tetrameric complex of subunits, each characterized by cytoplasmic N- and C-termini and a core region of two transmembrane helices flanking a pore-forming segment. To delineate the general regions mediating the assembly of ROMK1 subunits we constructed epitope-tagged N-terminal, C-terminal, and transmembrane segment deletion mutants. Nonfunctional subunits with N-terminal, core region, and C-terminal deletions had dominant negative effects when coexpressed with wild-type ROMK1 subunits in Xenopus oocytes. In contrast, coexpression of these nonfunctional subunits with Kv 2.1 (DRK1) did not suppress Kv 2.1 currents in control oocytes. Interactions between epitope-tagged mutant and wild-type ROMK1 subunits were studied in parallel by immunoprecipitating [35S]-labeled oocyte membrane proteins. Complexes containing both wild-type and mutant subunits that retained H5, M2, and C-terminal regions were coimmunoprecipitated to a greater extent than complexes consisting of wild-type and mutant subunits with core region and/or C-terminal deletions. The present findings are consistent with the hypothesis that multiple interaction sites located in the core region and cytoplasmic termini of ROMK1 subunits mediate homomultimeric assembly.  相似文献   

3.
4.
The renal outer medullary K(+) (ROMK) channel plays a critical role in renal sodium handling. Recent genome sequencing efforts in the Framingham Heart Study offspring cohort (Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, and Lifton RP. Nat Genet 40: 592-599, 2008) recently revealed an association between suspected loss-of-function polymorphisms in the ROMK channel and resistance to hypertension, suggesting that ROMK activity may also be a determinant of blood pressure control in the general population. Here we examine whether these sequence variants do, in fact, alter ROMK channel function and explore the mechanisms. As assessed by two-microelectrode voltage clamp in Xenopus oocytes, 3/5 of the variants (R193P, H251Y, and T313FS) displayed an almost complete attenuation of whole cell ROMK channel activity. Surface antibody binding measurements of external epitope-tagged channels and analysis of glycosylation-state maturation revealed that these variants prevent channel expression at the plasmalemma, likely as a consequence of retention in the endoplasmic reticulum. The other variants (P166S, R169H) had no obvious effects on the basal channel activity or surface expression but, instead, conferred a gain in regulated-inhibitory gating. As assessed in giant excised patch-clamp studies, apparent phosphotidylinositol 4,5-bisphosphate (PIP(2)) binding affinity of the variants was reduced, causing channels to be more susceptible to inhibition upon PIP(2) depletion. Unlike the protein product of the major ROMK allele, these two variants are sensitive to the inhibitory affects of a G protein-coupled receptor, which stimulates PIP(2) hydrolysis. In summary, we have found that hypertension resistance sequence variants inhibit ROMK channel function by different mechanisms, providing new insights into the role of the channel in the maintenance of blood pressure.  相似文献   

5.
6.
The ROMK (Kir1.1) family of epithelial K channels can be inactivated by a combination of low internal pH and low external K, such that alkalization does not reopen the channels unless external K is elevated. Previous work suggested that this inactivation results from an allosteric interaction between an inner pH gate and an outer K sensor, and could be described by a simple three-state kinetic model. In the present study, we report that a sustained depolarization slowly inactivated (half-time = 10-15 min) ROMK channels that had been engineered for increased affinity to internal polyamines. Furthermore, this inactivation occurred at external [K] < or =1 mM in ROMK mutants whose inner pH gate was constitutively open (ROMK2-K61M mutation). Both pH and voltage inactivation depended on external K in a manner reminiscent of C-type inactivation, but having a much slower time course. Replacement of ROMK extracellular loop residues by Kir2.1 homologous residues attenuated or abolished this inactivation. These results are consistent with the hypothesis that there are (at least) two separate closure processes in these channels: an inner pH-regulated gate, and an outer (inactivation) gate, where the latter is modulated by both voltage and external [K].  相似文献   

7.
The pH-sensitive renal potassium channel Kir1.1 is important for K+ homeostasis. Disruption of the pH-sensing mechanism causes type II Bartter syndrome. The pH sensor is thought to be an anomalously titrated lysine residue (K80) that interacts with two arginine residues as part of an 'RKR triad'. We show that a Kir1.1 orthologue from Fugu rubripes lacks this lysine and yet is still highly pH sensitive, indicating that K80 is not the H+ sensor. Instead, K80 functionally interacts with A177 on transmembrane domain 2 at the 'helix-bundle crossing' and controls the ability of pH-dependent conformational changes to induce pore closure. Although not required for pH inhibition, K80 is indispensable for the coupling of pH gating to the extracellular K+ concentration, explaining its conservation in most Kir1.1 orthologues. Furthermore, we demonstrate that instead of interacting with K80, the RKR arginine residues form highly conserved inter- and intra-subunit interactions that are important for Kir channel gating and influence pH sensitivity indirectly.  相似文献   

8.
The cell surface density of functional Kir1.1 (ROMK, KCNJ1) channels in the renal collecting duct is precisely regulated to maintain potassium balance. Here, we explore the mechanism by which phosphorylation of Kir1.1a serine 44 controls plasmalemma expression. Studies in Xenopus oocytes, expressing wild-type, phosphorylation mimic (S44D), or phosphorylation null (S44A) Kir1.1a, revealed that phosphorylation of serine 44 is required to stimulate traffic of newly synthesized channels to the plasma membrane through a brefeldin A-sensitive pathway. ROMK channels were found to acquire mature glycosylation in a serine 44 phosphorylation-dependent manner, consistent with a phosphorylation-dependent trafficking step within the endoplasmic reticulum/Golgi. Serine 44 neighbors a string of three "RXR" motifs, reminiscent of basic trafficking signals involved in directing early transport steps within the secretory pathway. Replacement of the arginine residues with alanine (R35A, R37A, R39A, R41A, or all Arg to Ala) did not restore cell surface expression of the phospho-null S44A channel, making it unlikely that phosphorylation abrogates a nearby RXR-type endoplasmic reticulum (ER) localization signal. Instead, analysis of the compound S44D phospho-mimic mutants revealed that the neighboring arginine residues are also necessary for cell surface expression, identifying a structure that determines export in the biosynthetic pathway. Suppressor mutations in a putative dibasic ER retention signal, located within the cytoplasmic C terminus (K370A, R371A), restored cell surface expression of the phospho-null S44A channel to levels exhibited by the phospho-mimic S44D channel. Taken together, these studies indicate that phosphorylation of Ser44 drives an export step within the secretory pathway to override an independent endoplasmic reticulum localization signal.  相似文献   

9.
ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verified to be highly specific, using ROMK knockout mice as a control. Characterization with segmental markers revealed a more extensive pattern of ROMK expression along the entire distal nephron than previously thought, localizing to distal convoluted tubule regions, DCT1 and DCT2; the connecting tubule (CNT); and cortical collecting duct (CD). ROMK was diffusely distributed in intracellular compartments and at the apical membrane of each tubular region. Apical labeling was significantly increased by high-K diet in DCT2, CNT1, CNT2, and CD (P < 0.05) but not in DCT1. Consistent with the large increase in apical ROMK, dramatically increased mature glycosylation was observed following dietary potassium augmentation. We conclude 1) our new antibody provides a unique tool to characterize ROMK channel localization and expression and 2) high-K diet causes a large increase in apical expression of ROMK in DCT2, CNT, and CD but not in DCT1, indicating that different regulatory mechanisms are involved in K diet-regulated ROMK channel functions in the distal nephron.  相似文献   

10.
Gating of inward rectifier Kir1.1 potassium channels by internal pH is believed to occur when large hydrophobic leucines, on each of the four subunits, obstruct the permeation path at the cytoplasmic end of the inner transmembrane helices (TM2). In this study, we examined whether closure of the channel at this point involves bending of the inner helix at one or both of two highly conserved glycine residues (corresponding to G134 and G143 in KirBac1.1) that have been proposed as putative "gating hinges" for potassium channels. Replacement of these conserved inner helical glycines by less flexible alanines did not abolish gating but shifted the apparent pKa from 6.6 +/- 0.01 (wild-type) to 7.1 +/- 0.01 for G157A-Kir1.1b, and to 7.3 +/- 0.01 for G148A-Kir1.1b. When both glycines were mutated the effect was additive, shifting the pKa by 1.2 pH units to 7.8 +/- 0.04 for the double mutant: G157A+G148A. At this pKa, the double mutant would remain completely closed under physiological conditions. In contrast, when the glycine at G148 was replaced by a proline, the pKa was shifted in the opposite direction from 6.6 +/- 0.01 (wild-type) to 5.7 +/- 0.01 for G148P. Although conserved glycines at G148 and G157 made it significantly easier to open the channel, they were not an absolute requirement for pH gating in Kir1.1. In addition, none of the glycine mutants produced more than small changes in either the cell-attached or excised single-channel kinetics which, in this channel, argues against changes in the selectivity filter. The putative pH sensor at K61-Kir1.1b, (equivalent to K80-Kir1.1a) was also examined. Mutation of this lysine to an untitratable methionine did not abolish pH gating, but shifted the pKa into an acid range from 6.6 +/- 0.01 to 5.4 +/- 0.04, similar to pH gating in Kir2.1. Hence K61-Kir1.1b cannot function as the exclusive pH sensor for the channel, although it may act as one of multiple pH sensors, or as a link between a cytoplasmic sensor and the channel gate. K61-Kir1.1b also interacted differently with the two glycine mutations. Gating of the double mutant: K61M+G148A was indistinguishable from K61M alone, whereas gating of K61M+G157A was midway between the alkaline pKa of G157A and the acid pKa of K61M. Finally, closure of ROMK, G148A, G157A, and K61M all required the same L160-Kir1.1b residue at the cytoplasmic end of the inner transmembrane helix. Hence in wild-type and mutant channels, closure occurs by steric occlusion of the permeation path by four leucine side chains (L160-Kir1.1b) at the helix bundle crossing. This is facilitated by the conserved glycines on TM2, but pH gating in Kir1.1 does not absolutely require glycine hinges in this region.  相似文献   

11.
The epithelial sodium channel (ENaC) and the secretory potassium channel (Kir1.1/ROMK) are expressed in the apical membrane of renal collecting duct principal cells where they provide the rate-limiting steps for Na(+) absorption and K(+) secretion. The cystic fibrosis transmembrane conductance regulator (CFTR) is thought to regulate the function of both ENaC and Kir1.1. We hypothesized that CFTR may provide a regulatory link between ENaC and Kir1.1. In Xenopus laevis oocytes co-expressing both ENaC and CFTR, the CFTR currents were 3-fold larger than those in oocytes expressing CFTR alone due to an increased expression of CFTR in the plasma membrane. ENaC was also able to increase Kir1.1 currents through an increase in surface expression, but only in the presence of CFTR. In the absence of CFTR, co-expression of ENaC was without effect on Kir1.1. ENaC-mediated CFTR-dependent up-regulation of Kir1.1 was reduced with a Liddle's syndrome mutant of ENaC. Furthermore, ENaC co-expressed with CFTR was without effect on the closely related K(+) channel, Kir4.1. We conclude that ENaC up-regulates Kir1.1 in a CFTR-dependent manner. CFTR may therefore provide the mechanistic link that mediates the coordinated up-regulation of Kir1.1 during the stimulation of ENaC by hormones such as aldosterone or antidiuretic hormone.  相似文献   

12.
The Kir1.1 (ROMK) subtypes of inward rectifier K+ channels mediate potassium secretion and regulate sodium chloride reabsorption in the kidney. The density of ROMK channels on the cortical collecting duct apical membrane is exquisitely regulated in concert with physiological demands. Although protein kinase A-dependent phosphorylation of one of the three phospho-acceptors in Kir1.1, Ser-44, also a canonical serum-glucocorticoid-regulated kinase (SGK-1) phosphorylation site, controls the number of active channels, it is unknown whether this involves activating dormant channels already residing on the plasma membrane or recruiting new channels to the cell surface. Here we explore the mechanism and test whether SGK-1 phosphorylation of ROMK regulates cell surface expression. Removal of the phosphorylation site by point mutation (Kir1.1, S44A) dramatically attenuated the macroscopic current density in Xenopus oocytes. As measured by antibody binding of external epitope-tagged forms of Kir1.1, surface expression of Kir1.1 S44A was inhibited, paralleling the reduction in macroscopic current. In contrast, surface expression and macroscopic current density was augmented by a phosphorylation mimic mutation, Kir1.1 S44D. In vitro phosphorylation assays revealed that Ser-44 is a substrate of SGK-1 phosphorylation, and expression of SGK-1 with the wild type channel increased channel density to the same level as the phosphorylation mimic mutation. Moreover, the stimulatory effect of SGK-1 was completely abrogated by mutation of the phosphorylation site. In conclusion, SGK-1 phosphorylation of Kir1.1 drives expression on the plasmalemma. Because SGK-1 is an early aldosterone-induced gene, our results suggest a possible molecular mechanism for aldosterone-dependent regulation of the secretory potassium channel in the kidney.  相似文献   

13.
Mutations in the inward rectifying renal K(+) channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332-391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP-wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332-351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.  相似文献   

14.
Pegan S  Tan J  Huang A  Slesinger PA  Riek R  Choe S 《Biochemistry》2007,46(18):5315-5322
Control of surface expression of inwardly rectifying potassium (Kir) channels is important for regulating membrane excitability. Kir2 channels have been shown to interact directly with PDZ-containing proteins in the postsynaptic density (PSD). These scaffold proteins, such as PSD95, bind to Kir2.1 channels via a PDZ-binding motif (T/S-x-Phi) in the C-terminal tail (SEI428). By utilizing a multidimensional solution NMR approach, we show that the previously unresolved structure of Kir2.1 tail (residues 372-428) is highly flexible. Using in vitro binding assays, we determined that shortening the flexible tail of Kir2.1 preceding the C-terminal region (residues 414-428) does not significantly disrupt PDZ binding. We also investigated which amino acids in the Kir2.1 tail associated with PSD95 PDZ1,2 by NMR spectroscopy, revealing that a stretch of 12 C-terminal amino acids is involved in interaction with both PDZ domains (residues 417-428). Deletion of the 11 amino acids preceding the C-terminal tail, Delta414-424, completely disrupts binding to PSD95 PDZ1,2. Therefore, the molecular interfaces formed between PDZ domains and Kir2.1 tail involve regions outside the previously identified binding motif (SEI428) and may be important for additional channel-specific interactions with associating PDZ-containing proteins.  相似文献   

15.
Kir1.1 channel regulates membrane potential and K+ secretion in renal tubular cells. This channel is gated by intracellular protons, in which a lysine residue (Lys80) plays a critical role. Mutation of the Lys80 to a methionine (K80M) disrupts pH-dependent channel gating. To understand how an individual subunit in a tetrameric channel is involved in pH-dependent channel gating, we performed these studies by introducing K80M-disrupted subunits to tandem tetrameric channels. The pH sensitivity was studied in whole-cell voltage clamp and inside-out patches. Homomeric tetramers of the wild-type (wt) and K80M-disrupted channels showed a pH sensitivity almost identical to that of their monomeric counterparts. In heteromeric tetramers and dimers, pH sensitivity was a function of the number of wt subunits. Recruitment of the first single wt subunit shifts the pK(a) greatly, whereas additions of any extra wt subunit had smaller effects. Single-channel analysis revealed that the tetrameric channel with two or more wt subunits showed one substate conductance at approximately 40% of the full conductance, suggesting that four subunits act as two pairs. However, three and four substates of conductance were seen in the tetrameric wt-3K80M and 4K80M channels. Acidic pH increased long-time closures when there were two or more wt subunits. Disruption of more than two subunits led to flicking activity with appearance of a new opening event and loss of the long period of closures. Interestingly, the channel with two wt subunits at diagonal and adjacent configurations showed the same pH sensitivity, substate conductance, and long-time closure. These results thus suggest that one functional subunit is sufficient to act in the pH-dependent gating of the Kir1.1 channel, the channel sensitivity to pH increases with additional subunits, the full pH sensitivity requires contributions of all four subunits, and two subunits may be coordinated in functional dimers of either trans or cis configuration.  相似文献   

16.
The precise molecular identity of the renal ATP-regulated secretory K+ channel is still a matter of some controversy. The inwardly rectifying K+ channel, Kir1.1 (ROMK) appears to form the pore of the channel, and mutations in Kir1.1 are responsible for Bartter syndrome. The native channel is sensitive to inhibition by the sulfonylurea glibenclamide, and it has been proposed that an accessory protein is required to confer glibenclamide sensitivity to Kir1.1. Several recent studies have suggested that the native channel is composed of the splice variant Kir1.1b (ROMK2) and the sulfonylurea receptor isoform SUR2B and that there is a direct physical interaction between these subunits. In this study, we have monitored the interaction between Kir1.1b and SUR2B. We find that SUR2B reaches the plasma membrane when coexpressed with Kir6.1 or Kir6.2 but not when coexpressed with Kir1.1b. Furthermore, we find that Kir1.1b exhibits an intrinsic sensitivity to inhibition by glibenclamide with an affinity similar to the native channel. These results demonstrate that SUR2B does not traffic to the membrane in the presence of Kir1.1b and is not required to confer glibenclamide sensitivity to Kir1.1b. This has important implications for the presumed structure of the renal ATP-regulated secretory K+ channel.  相似文献   

17.
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.  相似文献   

18.
The closed-state crystal structure of prokaryotic inward rectifier, KirBac1.1, has implicated four inner helical phenylalanines near the cytoplasmic side as a possible locus of the channel gate. In the present study, we investigate whether this structural feature corresponds to the physiological pH gate of the renal inward rectifier, Kir1.1 (ROMK, KCNJ1). Kir1.1 is endogenous to the mammalian renal collecting duct and the thick ascending limb of Henle and is strongly gated by internal pH in the physiological range. It has four leucines (L160-Kir1.1b), homologous to the phenylalanines of KirBac1.1, which could function as steric gates near the convergence of the inner (M2) helices. Replacing these Leu-160 residues of Kir1.1b by smaller glycines abolished pH gating; however, replacement with alanines, whose side chains are intermediate in size between leucine and glycine, did not eliminate normal pH gating. Furthermore, a double mutant, constructed by adding the I163M-Kir1.1b mutation to the L160G mutation, also lacked normal pH gating, although the I163M mutation by itself enhanced the pH sensitivity of the channel. In addition to size, side-chain hydrophobicity at 160-Kir1.1b was also important for normal pH gating. Mutants with polar side chains (L160S, L160T) did not gate normally and were as insensitive to internal pH as the L160G mutant. Hence, either small or highly polar side chains at 160-Kir1.1b stabilize the open state of the channel. A homology model of the Kir1.1 closed state, based on the crystal structure of KirBac1.1, was consistent with our electrophysiological data and implies that closure of the Kir1.1 pH gate results from steric occlusion of the permeation path by the convergence of four leucines at the cytoplasmic apex of the inner transmembrane helices. In the open state, K crosses the pH gate together with its hydration shell.  相似文献   

19.
Strong inward rectifier potassium (Kir2) channels are important in the control of cell excitability, and their functions are modulated by interactions with intracellular proteins. Here we identified a complex of scaffolding/trafficking proteins in brain that associate with Kir2.1, Kir2.2, and Kir2.3 channels. By using a combination of affinity interaction pulldown assays and co-immunoprecipitations from brain and transfected cells, we demonstrated that a complex composed of SAP97, CASK, Veli, and Mint1 associates with Kir2 channels via the C-terminal PDZ-binding motif. We further demonstrated by using in vitro protein interaction assays that SAP97, Veli-1, or Veli-3 binds directly to the Kir2.2 C terminus and recruits CASK. Co-immunoprecipitations indicated that specific Veli isoforms participate in forming distinct protein complexes in brain, where Veli-1 stably associates with CASK and SAP97, Veli-2 associates with CASK and Mint1, and Veli-3 associates with CASK, SAP97, and Mint1. Additionally, immunocytochemistry of rat cerebellum revealed overlapping expression of Kir2.2, SAP97, CASK, Mint1, with Veli-1 in the granule cell layer and Veli-3 in the molecular layer. We propose a model whereby Kir2.2 associates with distinct SAP97-CASK-Veli-Mint1 complexes. In one complex, SAP97 interacts directly with the Kir2 channels and recruits CASK, Veli, and Mint1. Alternatively, Veli-1 or Veli-3 interacts directly with the Kir2 channels and recruits CASK and SAP97; association of Mint1 with the complex requires Veli-3. Expression of Kir2.2 in polarized epithelial cells resulted in targeting of the channels to the basolateral membrane and co-localization with SAP97 and CASK, whereas a dominant interfering form of CASK caused the channels to mislocalize. Therefore, CASK appears to be a central protein of a macromolecular complex that participates in trafficking and plasma membrane localization of Kir2 channels.  相似文献   

20.
Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi < 7.4 where pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号