首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used genetic analysis to study the mode of action of two anti-microtubule herbicides, amiprophos-methyl (APM) and oryzalin (ORY). Over 200 resistant mutants were selected by growth on APM- or ORY-containing plates. The 21 independently isolated mutants examined in this study are 3- to 8-fold resistant to APM and are strongly cross-resistant to ORY and butamiphos, a close analog of APM. Two Mendelian genes, apm1 and apm2, are defined by linkage and complementation analysis. There are 20 alleles of apm1 and one temperature-sensitive lethal (33°) allele of apm2. Mapping by two-factor crosses places apm1 6.5 cM centromere proximal to uni1 and within 4 cM of pf7 on the uni linkage group, a genetically circular linkage group comprising genes which affect flagellar assembly or function; apm2 maps near the centromere of linkage group VIII. Allele-specific synthetic lethality is observed in crosses between apm2 and alleles of apm1. Also, self crosses of apm2 are zygotic lethal, whereas crosses of nine apm1 alleles inter se result in normal germination and tetrad viability. The mutants are recessive to their wild-type alleles but doubly heterozygous diploids (apm1 +/+ apm2) made with apm2 and any of 15 apm1 alleles display partial intergenic noncomplementation, expressed as intermediate resistance. Diploids homozygous for mutant alleles of apm1 are 4-6-fold resistant to APM and ORY; diploids homozygous for apm2 are ts(-) and 2-fold resistant to the herbicides. Doubly heterozygous diploids complement the ts(-) phenotype of apm2, but they are typically 1.5-2-fold resistant to APM and ORY. From the results described we suggest that the gene products of apm1 and apm2 may interact directly or function in the same structure or process.  相似文献   

2.
Through the isolation of suppressors of temperature-sensitive flagellar assembly mutations at the FLA10 locus of Chlamydomonas reinhardtii, we have identified six other genes involved in flagellar assembly. Mutations at these suppressor loci, termed SUF1-SUF6, display allele specificity with respect to which fla10- mutant alleles they suppress. An additional mutation, apm1-122, which confers resistance to the plant herbicides amiprophos-methyl and oryzalin, was also found to interact with mutations at the FLA10 locus. The apm1-122 mutation in combination with three fla10- mutant alleles results in synthetic cold-sensitive cell division defects, and in combination with an additional pseudo-wild-type fla10- allele yields a synthetic temperature-sensitive flagellar motility phenotype. Based upon the genetic interactions of these loci, we propose that the FLA10 gene product interacts with multiple components of the flagellar apparatus and plays a role both in flagellar assembly and in the cell cycle.  相似文献   

3.
4.
Silflow CD  Sun X  Haas NA  Foley JW  Lefebvre PA 《Genetics》2011,189(4):1249-1260
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.  相似文献   

5.
Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a snf2 mutant that are able to derepress secreted invertase. These revertants all carried suppressor mutations at a single locus, designated SSN20 (suppressor of snf2). Alleles with dominant, partially dominant and recessive suppressor phenotypes were recovered, but all were only partial suppressors of snf2, reversing the defect in invertase synthesis but not other defects. All alleles also caused recessive, temperature-sensitive lethality and a recessive defect in galactose utilization, regardless of the SNF2 genotype. No significant effect on SUC2 expression was detected in a wild-type (SNF2) genetic background. The ssn20 mutations also suppressed the defects in invertase derepression caused by snf5 and snf6 mutations, and selection for invertase-producing revertants of snf5 mutants yielded only additional ssn20 alleles. These findings suggest that the roles of the SNF2, SNF5 and SNF6 genes in regulation of SUC2 are functionally related and that SSN20 plays a role in expression of a variety of yeast genes.  相似文献   

6.
The csgA mutations of Myxococcus xanthus (formerly known as spoC) inhibit sporulation as well as rippling, which involves ridges of cells moving in waves. Sporulating revertants of CsgA cells were isolated by direct selection, since spores are much more resistant to heat and ultrasonic treatment than are vegetative cells. The revertants fell into seven groups on the basis of phenotype and the chromosomal location of the suppressor alleles. Group 1 contained one allele that was a back mutation of the original csgA mutation. Group 2 contained two linked alleles that were unlinked to the csgA locus and restored fruiting-body formation, sporulation, and rippling. Group 3 revertants regained the ability to sporulate in fruiting bodies but not the ability to ripple. Revertants in groups 4 to 7 were able to sporulate but unable to form fruiting bodies or ripples. The suppressors were all found to be bypass suppressors even though they were not selected as such in most cases. The csgA mutation prevented expression of several developmentally regulated promoters, each fused to a lacZ reporter gene and assayed by beta-galactosidase production. In four of five suppressor groups (groups 4 to 7), expression of each of these csgA-dependent fusions was restored, which suggests that bypass suppression restores developmental gene expression near the point at which expression is disrupted in CsgA mutants. Bypass suppression did not restore production of C factor, and morphological manifestations of development such as rippling and fruiting-body formation were usually abnormal. One interpretation of these results is that C factor has multiple functions and few suppressors can compensate for all of them.  相似文献   

7.
E. M. Maine  J. Kimble 《Genetics》1993,135(4):1011-1022
The glp-1 gene is essential for two cell interactions that control cell fate in Caenorhabditis elegans: induction of anterior pharynx in the embryo and induction of mitotic proliferation in the germ line. To identify other genes involved in these cell interactions, we have isolated suppressors of two temperature sensitive alleles of glp-1. Each of 14 recessive suppressors rescues both embryonic and germline glp-1(ts) defects. These suppressors are extragenic and define a set of six genes designated sog, for suppressor of glp-1. Suppression of glp-1 is the only obvious phenotype associated with sog mutations. Mutations in different sog genes show allele-specific intergenic noncomplementation, suggesting that the sog gene products may interact. In addition, we have analyzed a semidominant mutation that suppresses only the glp-1 germline phenotype and has a conditional feminized phenotype of its own. None of the suppressors rescues a glp-1 null mutation and therefore they do not bypass a requirement for glp-1. Distal tip cell function remains necessary for germline proliferation in suppressed animals. These suppressor mutations identify genes that may encode other components of the glp-1 mediated cell-signaling pathway or regulate glp-1 expression.  相似文献   

8.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

9.
The T4 mutation ptg19-80 affects the mechanism of capsid-length determination. It is located in gene 23, which encodes the major structural protein of the capsid. The mutation results in the production of abnormal-length capsids in high frequencies. This paper describes the isolation and partial characterization of second-site revertants of ptg19-80. In the course of their analysis, it was discovered that ptg19-80 is itself a double mutation consisting of a gene 23 mutation (ptg19-80c), which causes the morphogenetic defect, and a suppressor mutation located near the lysozyme gene. Phenotypic characterization of nine pseudo-wild-type revertants of this double-mutation revealed that these revertants all produced lower frequencies of abnormal capsids than did ptg19-80. Seven of these revertants were shown to contain two suppressor mutations, one mapping in or near gene 22 and done mapping in or near gene 24. Both mutations were required for suppression. These suppressors displayed no discernible phenotype in the absence of ptg19-80c.  相似文献   

10.
AEM. Adams  D. Botstein 《Genetics》1989,121(4):675-683
A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.  相似文献   

11.
We have analyzed extragenic suppressors of paralyzed flagella mutations in Chlamydomonas reinhardtii in an effort to identify new dynein mutations. A temperature-sensitive allele of the PF16 locus was mutagenized and then screened for revertants that could swim at the restrictive temperature (Dutcher et al. 1984. J. Cell Biol. 98:229-236). In backcrosses of one of the revertant strains to wild-type, we recovered both the original pf16 mutation and a second, unlinked suppressor mutation with its own flagellar phenotype. This mutation has been identified by both recombination and complementation tests as a new allele of the previously uncharacterized PF9 locus on linkage group XII/XIII. SDS-PAGE analysis of isolated flagellar axonemes and dynein extracts has demonstrated that the pf9 strains are missing four polypeptides that form the I1 inner arm dynein subunit. The primary effect of the loss of the I1 subunit is a decrease in the forward swimming velocity due to a change in the flagellar waveform. Both the flagellar beat frequency and the axonemal ATPase activity are nearly wild-type. Examination of axonemes by thin section electron microscopy and image averaging methods reveals that a specific domain of the inner arm complex is missing in the pf9 mutant strains (see accompanying paper by Mastronarde et al.). When combined with other flagellar defects, the loss of the I1 subunit has synergistic effects on both flagellar assembly and flagellar motility. These synthetic phenotypes provide a screen for new suppressor mutations in other loci. Using this approach, we have identified the first interactive suppressors of a dynein arm mutation and an unusual bypass suppressor mutation.  相似文献   

12.
We describe interactions between maternal-effect lethal mutations in four genes of Caenorhabditis elegans whose products appear to be involved in the meiotic and mitotic divisions of the one-cell embryo. Mitosis is disrupted by two dominant temperature-sensitive gain-of-function maternal-effect lethal mutations, mei-1(ct46) and mel-26(ct61), and by recessive loss-of-function maternal-effect lethal mutations of zyg-9. The phenotypic defects resulting from these mutations are similar. Doubly mutant combinations show a strong enhancement of the maternal-effect lethality under semipermissive conditions, suggesting that the mutant gene products interact. We isolated 15 dominant suppressors of the gain-of-function mutation mei-1(ct46). Thirteen of these suppressors are apparently intragenic, but 11 of them suppress in trans as well as cis. Two extragenic suppressors define a new gene, mei-2. The suppressor mutations in these two genes also result in recessive maternal-effect lethality, but with meiotic rather than mitotic defects. Surprisingly, most of these suppressors are also able to suppress mel-26(ct61) in addition to mei-1(ct46). The products of the four genes mei-1, mei-2, zyg-9 and mel-26 could be responsible for some of the specialized features that distinguish the meiotic from the mitotic divisions in the one-cell embryo.  相似文献   

13.
The antimicrotubule agents oryzalin (ORY), colchicine (COL) and taxol (TAX) were used to select three recessive, conditional lethal (ts-) mutants which defined two new essential loci, ory1 and cor1. The two ory1 mutants conferred resistance to ORY, TAX, and COL; the cor1 mutant conferred resistance only to COL. Each of the mutants displayed wild-type sensitivity to a number of unrelated inhibitors. Assembly and disassembly of flagellar microtubules in the ory1 mutants displayed wild-type sensitivity to ORY and COL, suggesting that the ory1 gene product either does not participate in these processes or the ory1 gene product alone is not sufficient to confer resistance. The ory1 locus mapped to linkage group X; cor1 was mapped to the left arm of linkage group XII. A synthetic lethal interaction was observed between ory1 and cor1 mutations, i.e., inferred ory1 cor1 double mutants were inviable at the permissive temperature. The conditional lethal phenotype of ory1-1 was used to select many spontaneous TS+ revertants, which arose at high frequencies. Genetic and phenotypic characterization of the revertants demonstrated that (1) the revertants fell into four phenotypic classes, including some which conferred supersensitivity to ORY and others which conferred cold-sensitive lethality, (2) reversion was caused in most or all cases by extragenic suppressors, (3) suppressor mutations displayed complex behavior in heterozygous (sup/+) diploids, (4) many different loci may be capable of suppressing ory1 mutants, and (5) suppressors of ory1-1 efficiently suppressed an independently isolated allele, ory1-2. Taken together the ory1, cor1, and suppressor mutations identify a number of interacting loci involved in essential cellular processes which are specifically susceptible to antimicrotubule agents.  相似文献   

14.
The SNF1 gene product of Saccharomyces cerevisiae is required to derepress expression of many glucose-repressible genes, including the SUC2 structural gene for invertase. Strains carrying a recessive snf1 mutation are unable to ferment sucrose. We have isolated 30 partial phenotypic revertants of a snf1 mutant that were able to ferment sucrose. Genetic characterization of these revertants showed that the suppressor mutations were all recessive and defined eight complementation groups, designated ssn1 through ssn8 (suppressor of snf1 ). The revertants were assayed for secreted invertase activity, and although activity was detected in members of each complementation group, only the ssn6 strains contained wild-type levels. Synthesis of secreted invertase in ssn6 strains was found to be constitutive, that is, insensitive to glucose repression; moreover, the ssn6 mutations also conferred constitutivity in a wild-type ( SNF1 ) genetic background and are, therefore, not merely suppressors of snf1 . Pleiotropic defects were observed in ssn6 mutants. Genetic analysis suggested that the ssn6 mutations are allelic to the cyc8 mutation isolated by R. J. Rothstein and F. Sherman, which causes increased production of iso-2-cytochrome c. The data suggest a regulatory function for SSN6 .  相似文献   

15.
The glp-1 gene product mediates cell-cell interactions required for cell fate specification during development in Caenorhabditis elegans. To identify genes that interact with glp-1, we screened for dominant suppressors of two temperature-sensitive glp-1 alleles and recovered 18 mutations that suppress both germline and embryonic glp-1 phenotypes. These dominant suppressors are tightly linked to glp-1 and do not bypass the requirement for a distal tip cell, which is thought to be the source of a signal that is received and transduced by the GLP-1 protein. Using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing, we found that at least 17 suppressors are second-site intragenic revertants. The suppressors, like the original glp-1(ts) mutations, are all located in the cdc10/SWI6/ankyrin domain of GLP-1. cdc10/SWI6/ankyrin motifs have been shown to mediate specific protein-protein interactions in other polypeptides. We propose that the glp-1(ts) mutations disrupt contact between GLP-1 and an as yet unidentified target protein(s) and that the dominant suppressor mutations restore appropriate protein-protein interactions.  相似文献   

16.
We describe here genetic interactions between mutant alleles of Actin-NonComplementing (ANC) genes and actin (ACT1) or actin-binding protein (SAC6, ABP1, TPM1) genes. The anc mutations were found to exhibit allele-specific noncomplementing interactions with different act1 mutations. In addition, mutant alleles of four ANC genes (ANC1, ANC2, ANC3 and ANC4) were tested for interactions with null alleles of actin-binding protein genes. An anc1 mutant allele failed to complement null alleles of the SAC6 and TPM1 genes that encode yeast fimbrin and tropomyosin, respectively. Also, synthetic lethality between anc3 and sac6 mutations, and between anc4 and tpm1 mutations was observed. Taken together, the above results strongly suggest that the ANC gene products contribute to diverse aspects of actin function. Finally, we report the results of tests of two models previously proposed to explain extragenic noncomplementation.  相似文献   

17.
Previously known cell size (wee) mutations of fission yeast suppress the mitotic block caused by a defective cdc25 allele. Some 700 revertants of cdc25-22 were obtained after ultraviolet mutagenesis and selection at the restrictive temperature. Most revertants carried the original cdc25 lesion plus a mutation in or very close to the wee1 gene. Two partial wee1 mutations of a new type were found among the revertants. Two new wee mutations mapping at the cdc2 gene (cdc2-w mutants) were also obtained. The various mutations were examined for their effects on cell division size, their efficiency as cdc25 suppressors, and their dominance relations. Full wee1 mutations were found to suppress cdc25 lesions very efficiently, whereas partial wee1 mutations were poor suppressors. The cdc25 suppression ability of cdc2-w mutations was allele specific for cdc2, suggesting bifunctionality of the gene product. The wee1 mutations were recessive for cdc25 suppression; cdc2-w mutations were dominant. A model is proposed for the genetic control of mitotic timing and cell division size, in which the cdc2+ product is needed and is rate limiting for mitosis. The cdc2+ activity is inhibited by the wee1+ product, whereas the cdc25+ product relieves this inhibition.  相似文献   

18.
Arjun Singh  T. R. Manney 《Genetics》1974,77(4):661-670
A suppressor SUP101 of alleles trp5-67 and trp5-18 of the trp5 locus of Saccharomyces cerevisiae is described. The two suppressible mutations have been previously classified as missense. The suppression does not result from a physiological bypass of the tryptophan synthetase-catalyzed reaction, since the suppression is allele-specific. IU alleles trp5-70, tryp5-95, and trp5-102; IA alleles trp5-81, trp5-101, and trp5-103; and the ochre alleles trp5-33 and trp5-48 are not suppressed by SUP101. SUP101 does not suppress ochre alleles ade2-1, his5-2, arg4-17, lys1-1, amber alleles trp1-1, tyr7-1, or unclassified alleles at a number of other loci. These results indicate SUP101 is a missense suppressor. Growth on tryptophanless media is dependent upon gene dosage of both the suppressor and the suppressible alleles. Only the diploids homozygous both for the suppressor and suppressible alleles produce growth equivalent to growth of the haploids bearing a suppressible allele and the suppressor. Suppressor-bearing strains grow poorly even on tryptophan-supplemented media. In more than 100 asci analyzed partial growth inhibition on the complete medium always segregated with the suppressor.  相似文献   

19.
The sup-11 I locus of C. elegans was defined by rare dominant suppressors of unc-93(e1500) III, a mutation that affects muscle structure. All ten of these dominant suppressors have a recessive "scrawny" phenotype. Two additional classes of sup-11 alleles were identified. One class, null alleles, was obtained by reversion of the dominant suppressor activity. These null alleles are recessive embryonic lethals, indicating that sup-11 is an essential gene. Members of the second class, rare semidominant revertants of the "scrawny" phenotype, are partial suppressors of unc-93(e1500). The genetic properties of the dominant suppressor mutations suggest that they are rare missense mutations that confer a novel activity to the sup-11 protein. We consider some of the ways that sup-11 alleles might suppress unc-93(e1500), including the possibilities that the altered sup-11 proteins restore function to a protein complex or are modified products of a gene that is a member of an unc-93 gene family.  相似文献   

20.
The protein product of T4 gene 63 catalyzes both the attachment of tail fibers to fiberless phage particles and the ligation of single-stranded RNA (Snopek at al., Proc. Natl. Acad. Sci. U.S.A. 74:3355-3359, 1977). To investigate whether the gene 63 product has a role in nucleotide metabolism, we isolated false revertants of amM69 in gene 63. We screened for revertants that could grow at 30 degrees C but not at 43 degrees C on Escherichia coli OK305 when nucleotides were limiting. These false revertants contained the original mutation in gene 63 and new suppressor mutations. Some of these suppressor mutations caused temperature sensitivity by themselves, allowing single mutants carrying the suppressor to be recognized and isolated. The results of mapping and complementation studies indicated that most of these ts suppressors were in the t gene (lysis), one was in gene 5 (baseplate), and one was in gene 18 (sheath). The mutation in gene 18, tsDH638, suppressed three different amber mutations in gene 63 but did not suppress amber mutations in several other genes. None of the suppressors that were characterized were in genes with known functions in nucleotide metabolism. However, an intriguing property of these false revertants was that they were very sensitive to hydroxyurea, an inhibitor of nucleotide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号