首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Tetrahymena thermophila, the expression of the temperature-specific surface protein SerH3 is controlled primarily by a temperature-dependent change in the stability of its mRNA. The change in SerH3 mRNA stability occurs very rapidly after a shift in incubation temperature. This change in temperature could affect SerH3 mRNA stability directly by producing structural changes in the mRNA or regulatory factors acting on SerH3 mRNA. Alternatively, the temperature change could act indirectly through a signal transduction pathway leading to de novo synthesis of new regulatory factors or modifications of existing regulatory factors. To address these issues, we monitored the effect of temperature on an in vitro SerH3 mRNA decay assay and the in vivo effects of a variety of inhibitors against protein synthesis and protein kinases on SerH3 mRNA stability. The results of Northern analysis of SerH3 mRNAs in an in vitro mRNA decay assay indicate that temperature alone can not change the half-life of this mRNA. Furthermore, slot blot analysis of cytoplasmic RNAs show that protein synthesis and the action of protein kinases are not required for SerH3 mRNA turnover in cells grown at 30 degrees C. In contrast, our results indicate that the rapid decay of the SerH3 mRNA in cells grown at 30 degrees C and shifted to 40 degrees C requires a one time serine/threonine phosphorylation event which occurs at the temperature shift. In addition, the data show that a regulatory protein involved in rapid SerH3 mRNA decay must be newly and continuously synthesized following the temperature shift from 30 to 40 degrees C. These data show the complexity of temperature regulated mRNA decay and indicate that phosphorylation and protein synthesis are major factors in this process.  相似文献   

2.
The expression of Tetrahymena surface proteins serotype H3 (SerH3) and serotype T (SerT) is under environmental regulation. SerH3 is expressed when cells are incubated between the temperatures of 20 and 35 degrees C, while SerT is expressed when cells are grown at temperatures above 35 degrees C. Using a SerH3 cDNA clone as a hybridization probe, we determined that (i) the SerH3 gene is a member of a multigene family; (ii) most members of this multigene family are variably rearranged during macronuclear development; and (iii) the gene which produces the SerH3 mRNA is reproducibly rearranged during macronuclear development.  相似文献   

3.
We have identified a Tetrahymena thermophila cDNA-containing plasmid (pC6) which hybridizes to a 1.47-kB RNA whose changes in cellular concentration parallel the changes in synthetic rate of a major cell surface protein. From a molecular and genetic analysis of strains expressing the gene ( SerH3 ) encoding this protein, and of strains expressing immunologically distinct alleles of this gene, we conclude that pC6 encodes a portion of the SerH3 allele.  相似文献   

4.
We have identified a Tetrahymena thermophila cDNA-containing plasmid (pC6) which hybridizes to a 1.47-kB RNA whose changes in cellular concentration parallel the changes in synthetic rate of a major cell surface protein. From a molecular and genetic analysis of strains expressing the gene (SerH3) encoding this protein, and of strains expressing immunologically distinct alleles of this gene, we conclude that pC6 encodes a portion of the SerH3 allele.  相似文献   

5.
A temperature shift from 40 to 28 degrees C rapidly induced expression of a specific immobilization antigen at the cell surface in Tetrahymena thermophila. This transformation was inhibited by actinomycin D and cycloheximide but not by colchicine or cytochalasin B. The major surface antigen expressed at 28 degrees C in cells homozygous for the SerH3 allele was partially purified, and an antiserum against this preparation was raised in rabbits. Electrophoresis, immunoblot, and [35S]methionine incorporation studies are reported which support the conclusion that the H3 antigen is an acidic protein with an Mr of approximately 52,000 daltons. An induced synthesis of the H3 immobilization antigen was detected within 30 min after a shift from 40 to 28 degrees C. This protein appeared to be synthesized in the microsomal fraction and transferred without cleavage to the cell surface, where it was inserted first into nonciliated regions.  相似文献   

6.
Gerber CA  Lopez AB  Shook SJ  Doerder FP 《Genetics》2002,160(4):1469-1479
The SerH locus of Tetrahymena thermophila is one of several paralogous loci with genes encoding variants of the major cell surface protein known as the immobilization antigen (i-ag). The locus is highly polymorphic, raising questions concerning functional equivalency and selective forces acting on its multiple alleles. Here, we compare the sequences and expression of SerH1, SerH3, SerH4, SerH5, and SerH6. The precursor i-ags are highly similar. They are rich in alanine, serine, threonine, and cysteine and they share nearly identical ER translocation and GPI addition signals. The locations of the 39 cysteines are highly conserved, particularly in the 3.5 central, imperfect tandem repeats in which 8 periodic cysteines punctuate alternating short and long stretches of amino acids. Hydrophobicity patterns are also conserved. Nevertheless, amino acid sequence identity is low, ranging from 60.7 to 82.9%. At the nucleotide level, from 9.7 to 26.7% of nucleotide sites are polymorphic in pairwise comparisons. Expression of each allele is regulated by temperature-sensitive mRNA stability. H mRNAs are stable at <36 degrees but are unstable at >36 degrees. The H5 mRNA, which is less affected by temperature, has a different arrangement of the putative mRNA destabilization motif AUUUA. Statistical analysis of SerH genes indicates that the multiple alleles are neutral. Significantly low ratios of the rates of nonsynonymous to synonymous amino acid substitutions suggest that the multiple alleles are subject to purifying (negative) selection enforcing constraints on structure.  相似文献   

7.
The Saccharomyces cerevisiae MOD5 gene encodes proteins that function in three subcellular locations: mitochondria, the cytoplasm, and nuclei (M. Boguta, L.A. Hunter, W.-C. Shen, E. C. Gillman, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 14:2298-2306, 1994; E. C. Gillman, L. B. Slusher, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 11:2382-2390, 1991). A mutant allele of MOD5 encoding a protein (Mod5p-I,KR6) located predominantly in mitochondria was constructed. Mutants defective in delivering Mod5p-I,KR6 to mitochondria were sought by selecting cells with increased cytosolic activity of this protein. Twenty-five mutants defining four complementation groups, mdp1, mdp2, mdp3, and mdp4, were found. They are unable to respire at 34 degrees C or to grow on glucose medium at 38 degrees C. Cell fractionation studies showed that mdp1, mdp2, and mdp3 mutants have an altered mitochondrial-cytoplasmic distribution of Mod5p. mdp2 can be suppressed by ACT1, the actin-encoding gene. The actin cytoskeleton organization is also aberrant in mdp2 cells. MDP2 is the same as VRP1 (S. F. H. Donnelly, M. J. Picklington, D. Pallotta, and E. Orr, Mol. Microbiol. 10:585-596, 1993). MDP3 is identical to PAN1, which encodes a protein that interacts with mRNA 3' ends and affects initiation of protein synthesis (A. B. Sachs and J. A. Deardoff, Cell 70:961-973, 1992). These results implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis as being as important for protein distribution in S. cerevisiae as they are for distribution of cytosolic proteins in higher eukaryotes. This provides the potential to apply genetic and molecular approaches to study gene products and mechanisms involved in this type of protein distribution. The selection strategy also offers a new approach for identifying gene products involved in the distribution of proteins to their subscellular destinations.  相似文献   

8.
9.
10.
11.
Doerder FP 《Gene》2000,257(2):319-326
In ciliates, variable surface protein genes encoding the immobilization antigen (-ag) are expressed under different environmental conditions, including temperature and salt stress. These i-ags are GPI-linked and coat the entire external surface of the cell, including the cilia. In Tetrahymena thermophila-ag in natural isolates is the result of dominant epistasis masking the expression of the H i-ag ordinarily expressed at 20-36 degrees C. This report describes the expression and sequence of the Ser-ag. J is present on the cell surface up to 38 degrees C; above 38 degrees C SerSeranked by an A-rich 5' UTR and a 3' UTR containing putative mRNA destabilization motifs. The encoded J polypeptide consists of 438 amino acids and is rich in alanine, cysteine, serine and threonine. The N- and resemble signal peptide and GPI-anchor addition sites, respectively. The majority of the molecule consists of four imperfect repeats with 10 periodic cysteines per repeat in the pattern CX(6)CX(2)CX(21)CX(4)CX(13-15)CX(2)CX(18)CX(3)CX(11)CX(9-10). Although H i-ags encoded by paralogous SerH genes have 3.5 imperfect repeats with eight periodic cysteines per repeat, J nevertheless resembles H with respect to amino acid composition, codon usage, N- and C-termini, the arrangement of the cysteine periods, and regulation by mRNA stability. However, despite these similarities and epistasis, the evolutionary relationship between SerH and SerJ is unclear.  相似文献   

12.
The presence of specific proteins (known as immobilization antigens) on the surface of the ciliated protozoan Tetrahymena thermophila is under environmental regulation. There are five different classes (serotypes) of surface proteins which appear on the cell surface when T. thermophila is cultured under different conditions of temperature or incubation medium; three of these are temperature dependent. The appearance of these proteins on the cell surface is mutually exclusive. We used polyclonal antibodies raised against 30 degrees C (designated SerH3)- and 40 degrees C (designated SerT)-specific surface antigens to study their structure and expression. We showed that these surface proteins contain at least one disulfide bridge. On sodium dodecyl sulfate-denaturing polyacrylamide gels, the nonreduced 30 degrees C- and 40 degrees C-specific surface proteins migrated with molecular sizes of 69 and 36 kilodaltons, respectively. The reduced forms of the proteins migrated with molecular sizes of 58 and 30 kilodaltons, respectively. The synthesis of the surface proteins responded rapidly and with a time course similar to that of the incubation temperature. The synthesis of each surface protein was greatly reduced within 1 h and undetectable by 2 h after a shift to the temperature at which the protein is not expressed. Surface protein synthesis resumed by the end of 1 h after a shift to the temperature at which the protein is expressed. The temperature-dependent induction of these surface proteins appears to be dependent on the synthesis of new mRNA, as indicated by a sensitivity to actinomycin D. Surface protein syntheses were mutually exclusive except at a transition temperature. At 35 degrees C both surface proteins were synthesized by a cell population. These data support the potential of this system as a model for the study of the effects of environmental factors on the genetic regulation of cell surface proteins.  相似文献   

13.
Aedes albopictus cells (clone LT-C7) showed a marked cytopathic effect and inhibition of protein synthesis (both host and viral) after infection with vesicular stomatitis virus (VSV), but only if (i) cultures were incubated at 34 degrees C rather than 28 degrees C and (ii) serum was present in the medium (S. Gillies and V. Stollar, Mol. Cell. Biol. 2:66-75, 1982). To learn more about how protein synthesis is shut off in VSV-infected A. albopictus cells, we have compared cell-free protein synthesis in extracts prepared from VSV-infected cells and control cells. Extracts prepared 6 h after infection from VSV-infected cells maintained at 34 degrees C in the presence of serum reflected what was observed with intact cells in at least two respects: (i) they showed a markedly diminished capacity to carry out protein synthesis (whether directed by endogenous or exogenously added mRNA), and (ii) there was decreased phosphorylation in vitro by [gamma-32P]ATP of a specific ribosomal protein (Gillies and Stollar, Mol. Cell. Biol. 2:66-75, 1982). In addition, and consistent with a block at the level of initiation, the formation of 80S initiation complexes, as measured by binding of VSV 12 to 18S mRNA, was reduced in the inactive extracts. Addition of an S-100 fraction from uninfected cells to the inactive extract reversed each of the aforementioned changes; i.e., it restored protein synthetic activity, it stimulated the formation of 80S initiation complexes, and it increased phosphorylation of the specific ribosomal protein referred to above. The active component in the S-100 fraction was heat labile and non-dialyzable and, upon ammonium sulfate fractionation of the S-100 fraction, was found in the 40 to 70% saturation fraction. Our findings suggest that VSV infection of A. albopictus cells inhibits protein synthesis by inactivating a macromolecular component, probably a protein, in the S-100 fraction which may be involved in the initiation of protein synthesis. More specifically, we suggest that this component is involved in the joining of the ribosomal subunits to form 80S initiation complexes.  相似文献   

14.
15.
Topological studies of multi-spanning membrane proteins commonly use sequentially truncated proteins fused to a C-terminal translocation reporter to deduce transmembrane (TM) segment orientation and key biogenesis events. Because these truncated proteins represent an incomplete stage of synthesis, they transiently populate intermediate folding states that may or may not reflect topology of the mature protein. For example, in Xenopus oocytes, the aquaporin-1 (AQP1) water channel is cotranslationally directed into a four membrane-spanning intermediate, which matures into the six membrane-spanning topology at a late stage of synthesis (Skach, W. R., Shi, L. B., Calayag, M. C., Frigeri, A., Lingappa, V. R., and Verkman, A. S. (1994) J. Cell Biol. 125, 803-815 and Lu, Y., Turnbull, I. R., Bragin, A., Carveth, K., Verkman, A. S., and Skach, W. R. (2000) Mol. Biol. Cell 11, 2973-2985). The hallmark of this process is that TM3 initially acquires an Nexo/Ccyto (Type I) topology and must rotate 180 degrees to acquire its mature orientation. In contrast, recent studies in HEK-293 cells have suggested that TM3 acquires its mature topology cotranslationally without the need for reorientation (Dohke, Y., and Turner, R. J. (2002) J. Biol. Chem. 277, 15215-15219). Here we re-examine AQP1 biogenesis and show that irrespective of the reporter or fusion site used, oocytes and mammalian cells yielded similar topologic results. AQP1 intermediates containing the first three TM segments generated two distinct cohorts of polypeptides in which TM3 spanned the ER membrane in either an Ncyto/Cexo (mature) or Nexo/Ccyto (immature) topology. Pulse-chase analyses revealed that the immature form was predominant immediately after synthesis but that it was rapidly degraded via the proteasome-mediated endoplasmic reticulum associated degradation (ERAD) pathway with a half-life of less than 25 min in HEK cells. As a result, the mature topology predominated at later time points. We conclude that (i) differential stability of biogenesis intermediates is an important factor for in vivo topological analysis of truncated chimeric proteins and (ii) cotranslational events of AQP1 biogenesis reflect a common AQP1 folding pathway in diverse expression systems.  相似文献   

16.
Two short-lived precursor proteins, pp37 and pp32, of the mitochondrial phosphoprotein pp30 (formerly denoted as ib) have been detected in Bt2cAMP-stimulated rat adrenal cortex cells, incubated at 25 degrees C or with 1,10-ortho-phenanthroline at 37 degrees C. Subsequently, these two precursor proteins were also identified in cells incubated at 37 degrees C, where they are present only at low levels due to their short half-life. pp30 is produced in several steroidogenic tissues in response to trophic hormone or second messenger analogue. pp37 and pp32 are also phosphoproteins located in the mitochondrion that are produced in response to cAMP analogue and give rise to proteolytic peptide maps similar to that of pp30. As for pp30, inhibition of cytosolic translation prevents the production of pp37 and pp32. The larger precursor protein pp37 has an apparent molecular mass of 37 kDa, an isoelectric point of approximately 7.1, and a half-life at 37 degrees C of 3-4 min. Pulse-chase studies indicate that this protein is processed into the smaller protein, pp32, which has an apparent molecular mass of 32 kDa, an isoelectric point of approximately 6.4, and a half-life at 37 degrees C of 3-4 min. This latter protein is the immediate precursor of pp30. Since ortho-phenanthroline inhibits the mitochondrial processing protease, while the lower incubation temperature slows both protein import and protease processing, the experimental conditions necessary to detect these proteins are consistent with pp37 being a precursor protein that contains two cleavable presequences and is imported into the mitochondrion. The sequential removal of these sequences produces the mature protein pp30.  相似文献   

17.
18.
Two Tetrahymena kinesin-like proteins (klps) of the kinesin II subfamily, Kin1 and Kin2, were first identified by Brown et al. [1999: Mol Biol Cell 10: 3081-3096] and shown to be involved in ciliary morphogenesis probably as molecular motors in intraciliary transport (ICT). Using Tetrahymena genomic DNA as a template, we cloned Kin5, another kinesin II subfamily member. Kin5 is upregulated upon deciliation, suggesting that Kin5 is a ciliary protein. Kin5 is most closely related to Osm3, a Caenorhabditis elegans kinesin II; Osm3 and Kin5 have a 56% identity, which rises to 60.4% in the motor domain and a 45% identity in a 60 amino acid region of the C-terminal FERM (4.1, Ezrin, Radixin, Moesin) domain, not present in Kin1 or Kin2, which we hypothesize to be a critical domain either for dimerization or for cargo recognition in ICT. An antibody to a peptide sequence from the tail region of Kin5 localizes in a punctate pattern along the ciliary axoneme, colocalizing with an antibody to the raft protein IFT139. These findings suggest that Kin5 is an ICT motor like Osm3. Osm3 orthologs apparently transport membrane proteins and Kin5 may be the homodimeric kinesin II that performs this function in Tetrahymena cilia.  相似文献   

19.
We have cloned and characterized the cDNA and the macronuclear genomic copy of the highly conserved ribosomal protein (r-protein) L3 of Tetrahymena thermophila. The r-protein L3 is encoded by a single copy gene interrupted by one intron. The organization of the promoter region exhibits features characteristic of ribosomal protein genes in Tetrahymena. The codon usage of the L3 gene is highly biased. A thorough analysis of codon usage in Tetrahymena genes revealed that genes could be categorized into two classes according to codon usage bias. Class A comprises r-protein genes and a number of other highly expressed genes. Class B comprises weakly expressed genes such as the conjugation induced CnjB and CnjC genes, but surprisingly, this class also contains abundantly expressed genes such as the genes encoding the surface antigens SerH3 and SerH1. Codon usage is slightly more restricted in class A than in class B, but both classes exhibit distinct and different codon usage biases. Class A genes preferentially use C and U in the silent third codon positions, whereas class B genes preferentially use A and U in the silent third codon positions. The analysis suggests that two different strategies have been employed for optimization of codon usage in the A+T-rich genome of Tetrahymena.  相似文献   

20.
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号