首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenotypes of NIH 3T3 cells transfected with basic fibroblast growth factor (bFGF) cDNAs that express only the high molecular weight (HMW) forms of bFGF, the 18-kDa form, or all forms were examined. Cells producing the 18 kDa or all forms of bFGF were transformed at high levels of growth factor expression but were nontransformed at low levels. Cell producing low levels of HMW forms of bFGF were growth impaired when compared with the parental cells. These cells tended to form multinucleated giant cells, did not grow in soft agar, were nontumorigenic, had a normal bFGF receptor number, and had a nontransformed morphology. Cells expressing high levels of HMW bFGFs had a transformed morphology and were tumorigenic. These data suggest a specific functional role for HMWbFGF.  相似文献   

2.
Basic fibroblast growth factor (bFGF or FGF-2) is a pleiotropic growth factor that promotes growth of mesenchymal and epithelial cells, stimulates angiogenesis and neuroprotection. Moreover, exogenous bFGF by stimulating angiogenesis promotes healing of gastroduodenal ulcers and cardiac and brain injury. All these actions were demonstrated in regard to 18 kDa bFGF isoform that is secreted by cells via an ER/Golgi-independent pathway and activates FGF receptors. However in some transformed and stressed cells and in some tissues (e.g. brain) the single copy bFGF gene encodes multiple gene products: 18 kDa and also higher molecular weight (HMW) bFGF isoforms: ∼21 and ∼22 kDa in rodents, and ∼22, ∼23 and ∼24 kDa in humans. The biologic roles of these HMW bFGF isoforms in vivo remain unknown. In this study we demonstrated that in normal, uninjured gastric mucosa, bFGF is almost exclusively expressed as 18 kDa isoform translated through a classical AUG (methionine) codon. In contrast, in injured gastric mucosa of rat, bFGF gene is preferentially translated to HMW bFGF isoforms through alternative CUG (leucine) initiation codon. Gastric mucosal injury caused in rats a significant increase in bFGF mRNA at 8 and 24 h vs. normal mucosa and a significant increase in bFGF protein at 24–72 h, mainly due to increased expression of ∼21 and ∼22 kDa HMW bFGF isoforms. This is first demonstration that gastric mucosal injury and repair triggers local activation of bFGF gene with preferential translation of HMW bFGF isoforms through a non-canonical CUG codon. This study uncovered CUG-initiated HMW bFGF translation as a novel regulatory mechanism operating in vivo during gastric injury repair.  相似文献   

3.
Multiple forms of FGF-2 have been shown to exist in many cell types. These different species of molecular masses of 18, 21.5, 22, and 24 kDa are all translated via the use of alternate initiation codons. The three forms of HMW FGF-2 initiate at CUGs codons, whereas the 18 kDa form initiates at an AUG codon. The entire 18 kDa sequence is contained within the larger forms of HMW FGF-2 as the AUG codon is 3′ to the CUG codons. Although the 18 kDa form FGF-2 is localized primarily in the cytosol, a significant fraction of the HMW FGF-2 has a nuclear location. The nuclear localization of HMW FGF-2 is determined by amino acid residues in the amino-terminal extended sequence. The residues required for nuclear localization appear to be RG repeats that are found at multiple sites within the amino-terminal extension of HMW FGF-2. The nuclear localization of HMW FGF-2 suggested that these species may have unique properties. By selecting permanent transfectants of 3T3 cells expressing HMW, 18 kDa FGF-2, or all forms of FGF-2, we have found that HMW FGF-2 can endow cells with a phenotype different from that of cells expressing 18 kDa FGF-2. These cells are transformed by what appears to be the intracellular action of HMW FGF-2. The interaction of FGF-2 with heparin has also been examined. Contrary to other reports claiming that FGF-2 required heparin or heparan-sulfate for interaction with its high-affinity receptor, we have found that FGF-2 binds to its receptor in the absence of glycosaminoglycans, and that this binding activates the receptor. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The molecular weight of rat basic fibroblast growth factor is predicted to be 18 kDa when the amino acid sequence is read from the single AUG initiation codon found in the cDNA. DNA sequencing upstream of this AUG codon indicated, however, that there was an extended open reading frame. In vitro translation of the rat cDNA for basic FGF gave three proteins of 18.0, 21.5, and 22.0 kDa in equal abundance. The same proteins were produced in vivo by COS cells transfected with the rat cDNA. Deletion of 81 base pairs from the reading frame upstream of the AUG codon resulted in the expression of only one protein observed at 18.0 kDa. These results indicated that the 22.0 and 21.5 kDa forms of rat basic FGF were formed when translation initiates at the alternative upstream non-AUG codons. Rat cell lines and tissues were found to express all three forms of basic FGF protein. The cDNA was used to analyze the subcellular distribution of the different forms of rat basic FGF. Subcellular fractionation and immunofluorescence of transfected COS cells showed that all three forms of the protein localized preferentially in the nucleus. Expression of a truncated cDNA from which 81 base pairs (27 amino acids) of the upstream reading frame had been deleted, showed localization of the smaller form of bFGF alone in the nucleus. These results demonstrated that although the amino acids that were deleted from the N-terminus of rat basic fibroblast growth factor have a sequence characteristic of nuclear localization motifs, they are not obligatory for the transport of the growth factor into the nucleus. Nuclear extracts taken from transfected cells also contained two smaller proteins of 16 and 12 kDa that were detected by Western blot analysis. It is possible that these are proteolytic products of bFGF.  相似文献   

5.
To study possible functional differences of the 18-kD and high molecular weight forms of basic fibroblast growth factor (bFGF), we have examined the effect of endogenous production of different bFGF forms on the phenotype of NIH 3T3 cells. Cells transfected with cDNAs coding for either 18-kD bFGF (18-kD bFGF) or all four molecular forms (18, 22, 22.5, 24 kD; wild type [WT] bFGF) exhibit increased migration and decreased FGF receptor number compared to parental cells. However, migration and FGF receptor number of cells transfected with a cDNA coding only for high molecular weight bFGF (22, 22.5, and 24 kD; HMW bFGF) were similar to that of parental cells transfected with vector alone. Cells expressing HMW, 18 kD, or WT bFGF grew to high saturation densities in 10% serum. However, only cells expressing HMW or WT bFGF grew in low serum. Cell surface or metabolic labeling of the different cell types followed by immunoprecipitation with anti-bFGF antibody showed primarily cell surface-associated 18-kD bFGF. In addition, when cells expressing exclusively HMW bFGF were transfected with a cDNA coding for 18-kD bFGF, migration was increased, bFGF receptors were down-regulated, and 18-kD bFGF was found on the cell surface. Cells expressing 18-kD bFGF transfected with a cDNA encoding FGF receptor-2 lacking the COOH-terminal domain (dominant negative bFGF receptor) exhibited a flat morphology and decreases in migration and saturation density. Cells expressing HMW bFGF transfected with the dominant negative bFGF receptor continued to grow to a high saturation density, proliferated in low serum, and exhibited no morphological changes. These results indicate that increased cell migration and FGF receptor down-regulation are mediated by the extracellular interaction of 18-kD bFGF with its cell surface receptor. Growth in low serum may be stimulated by the intracellular action of HMW bFGF through mechanisms independent of the presence of a cell surface receptor. Thus, the different molecular forms of bFGF may act through distinct but convergent pathways.  相似文献   

6.
Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.  相似文献   

7.
Three forms of basic fibroblast growth factor (bFGF), initiated at an AUG (18 kDa) and two CUG (21 and 22.5 kDa) start codons, were produced following transfection of COS cells with human hepatoma bFGF cDNA. The subcellular localization of the different forms was investigated directly or by using chimeric genes constructed by fusion of the bFGF and chloramphenicol acetyltransferase open reading frames. The AUG-initiated proteins were cytoplasmic, while the CUG-initiated forms were nuclear. The signal sequence responsible for the nuclear localization of bFGF is contained within 37 amino acid residues between the second CUG and the AUG start codons. Alternative initiation of translation regulates the subcellular localization of bFGF and thus could modulate its role in cell growth and differentiation control.  相似文献   

8.
Human basic fibroblast growth factor (FGF-2) occurs in four isoforms: a low molecular weight (LMW FGF-2, 18 kDa) and three high molecular weight (HMW FGF-2, 22, 22.5, and 24 kDa) forms. LMW FGF-2 is primarily cytoplasmic and functions in an autocrine manner, whereas HMW FGF-2s are nuclear and exert activities through an intracrine, perhaps nuclear, pathway. Selective overexpression of HMW FGF-2 forms in fibroblasts promotes growth in low serum, whereas overexpression of LMW FGF-2 does not. The HMW FGF-2 forms have two functional domains: an amino-terminal extension and a common 18-kDa amino acid sequence. To investigate the role of these regions in the intracrine signaling of HMW FGF-2, we produced stable transfectants of NIH 3T3 fibroblasts overexpressing either individual HMW FGF-2 forms or artificially nuclear-targeted LMW FGF-2. All of these forms of FGF-2 localize to the nucleus/nucleolus and induce growth in low serum. The nuclear forms of FGF-2 trigger a mitogenic stimulus under serum starvation conditions and do not specifically protect the cells from apoptosis. These data indicate the existence of a specific role for nuclear FGF-2 and suggest that LMW FGF-2 represents the biological messenger in both the autocrine/paracrine and intracrine FGF-2 pathways.  相似文献   

9.
Basic fibroblast growth factor (FGF2) is synthesized as four isoforms with molecular weights of 24, 22.5, 22, and 18 kDa, with each of the three higher molecular weight forms (hmwFGF2) produced by the initiation of translation at one of three upstream CUG codons. We have shown that bovine arterial endothelial cells export the high molecular weight forms of FGF2 (hmwFGF2) in a 17beta-estradiol-dependent manner (Piotrowicz et al., 1997, J Biol Chem 272:7042-7047). To determine whether the hmwFGF2 forms affected cell behavior after release, we evaluated the effect of recombinant hmwFGF2 on the growth and migration of endothelial cells and mammary carcinoma cells (MCF-7). Treatment with the recombinant protein resulted in the inhibition of endothelial cell migration by 45% and MCF-7 cell migration by 70%. HmwFGF2-dependent inhibition was observed when endothelial cell migration was stimulated by 18 kDa FGF2 or vascular endothelial growth, and MCF cell migration was stimulated with insulin-like growth factor. In each case, inclusion of an antibody against the 55 amino acid amino terminal end of 24 kDa FGF2 abrogated the inhibition of migration, while antibodies to the 18 kDa FGF2 domain had no effect. When endothelial cells were cultured under conditions which promoted export of hmwFGF2, a 40% decrease in motility was observed which was reversed by the antibodies to the 24 kDa FGF2. Thus, both recombinant and endogenously produced hmw-FGF2 are capable of inhibiting migration. In contrast to the ubiquitous effect on migration, hmwFGF2 had no effect on endothelial cell growth but stimulated MCF-7 growth equally as well as the 18 kDa FGF2 (threefold). Antibodies to the 18 kDa domain of 24 kDa FGF2 blocked the growth-promoting activity of hmwFGF2, but those to the amino terminal end were ineffective. These data suggest that hmwFGF2 has dual activities, an inhibitory effect on cell migration and a growth-stimulating effect. The two activities can be localized to different parts of hmwFGF2: inhibitory activity to the amino terminal 55 amino acids (which are absent from the 18 kDa FGF2) and growth-promoting activity to the 18 kDa domain. Therefore, the ratio of hmwFGF2 and 18 kDa FGF2 in the extracellular space may provide a mechanism of control for angiogenesis and mammary tumor development.  相似文献   

10.
11.
Four forms of basic fibroblast growth factor (bFGF) are synthesized from the same mRNA, resulting from alternative initiations of translation at three CUG start codons and one AUG start codon. The CUG- and AUG-initiated forms have distinct intracellular localizations and can modify cell phenotypes differently, indicating that control of the alternative expression of the different forms of bFGF has an important impact on the cell. In this study, we investigated the roles of the mRNA 5' untranslated region and the alternatively translated region located between the CUG and AUG codons in the regulation of alternative translation of the different forms of bFGF. Deletions and site-directed mutagenesis were carried out in bFGF mRNA leader, and translation was studied in vitro and in vivo. The results enabled us to identify five cis-acting RNA elements (two in the 5' untranslated region and three in the alternatively translated region) involved in the regulation of either global or alternative initiation of translation. Each of these elements had a specific effect on the level of synthesis of the different forms of bFGF. Furthermore, we showed that the 5' untranslated region regulatory elements had different effects on bFGF translation, depending on the translation system used. These results suggest that bFGF translation is modulated by cis-acting elements corresponding to secondary or tertiary RNA structures, which could be the targets of cell-specific trans-acting factors.  相似文献   

12.
To gain insight into the mechanisms of synthesis, storage, and release of basic fibroblast growth factor (bFGF), we studied the immunohistochemical localization of bFGF in bovine coronary artery, coronary sinus, and adrenal capillary endothelial cells grown in culture. Light and electron microscopic immunohistochemical studies were performed using the ABC immunoperoxidase method on p-formaldehyde-fixed cells. Five different anti-bFGF antibodies gave similar results in all cell types. In subconfluent cells, immunoreactivity was noted in the nuclear chromatin, nucleoli, cytosol, cytoplasmic vesicles (some of which appeared to fuse with the plasma membrane), and extracellular matrix. No reaction was found in endoplasmic reticulum or Golgi zones. Confluent cells demonstrated less immunoreactivity in the nuclei and cytosol but more in the extracellular matrix. Some cells of senescent morphology showed only cytoplasmic staining; however, no cells were found with only nuclear staining. Biochemical studies showed that three forms of bFGF (18, 24, and 26 kDa) were present in endothelial cells and varied with different culture conditions. Protection analysis indicated that bFGF mRNA is less abundant in postconfluent cells than in subconfluent cells. These data suggest that subconfluent cells synthesize bFGF and transport it into the nucleus and exocytotic vesicles, while confluent cells synthesize little bFGF but store it in extracellular matrix, cytoplasmic vesicles, and nuclei.  相似文献   

13.
14.
Zhou XY  Wang QR  Huang YH  Cheng LM  Tan MQ 《生理学报》2005,57(2):199-204
本文通过制备小鼠骨髓内皮细胞无血清条件培养液(serum-free murine bone marrow endothelial cell conditioned medium, mBMEC-CM),经超滤分为分子量>10 kDa组分和<10 kDa组分,分别观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞集落生成的影响。用Wright’S Giemsa染色计数内皮细胞集落及检测骨髓内皮细胞的vWF,通过[3H]- TdR掺入量,观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞增殖的影响,并用分子杂交方法检测内皮细胞表达的细胞因子,从几个方面来研究mBMEC-CM对骨髓内皮细胞增殖的作用。结果显示,骨髓内皮细胞vWF 检测阳性。mBMEC-CM原液及其分子量>10 kDa组分能刺激骨髓内皮细胞集落增殖,且能明显增加骨髓内皮细胞[3H]-TdR 掺入量;分子量<10 kDa组分对骨髓内皮细胞集落增殖无明显刺激作用,也不能增加骨髓内皮细胞[3H]-TdR掺入量。外源加入IL-6、IL-11、SCF、GM-CSF、VEGF、bFGF 6种细胞因子能明显刺激骨髓内皮细胞集落增殖,SCF、VEGF、bFGF能明显增加骨髓内皮细胞[3H]-TdR掺入量。Atlas array膜杂交实验显示骨髓内皮细胞内源性表达GM-CSF、SCF、MSP-1、endothelin-2、thymosin β10、connective tissue GF、PDGF-A chain、MIP-2α、PlGF、neutrophil activating protein ENA-78、INF-γ、IL-1、IL-6、IL-13、IL-11、inhibin-α等细胞因子的mRNA。上述结果提示,骨髓内皮细胞无血清条件培养液对骨髓内皮细胞增殖具有促进作用。  相似文献   

15.
16.
Flavonoids have been proposed to act as chemopreventive agents in numerous epidemiological studies and have been shown to inhibit angiogenesis and proliferation of tumor cells and endothelial cells in vitro. Angiogenesis requires tightly controlled extracellular matrix degradation mediated by extracellular proteolytic enzymes including matrix metalloproteinases (MMPs) and serine proteases, in particular, the urokinase-type plasminogen activator (uPA)-plasmin system. In this study, we have investigated the antiangiogenic mechanism of the flavonoids, genistein, apigenin, and 3-hydroxyflavone in a human umbilical vein endothelial cell (HUVEC) model. The stimulation of serum-starved HUVECs with vascular endothelial growth factor/basic fibroblast growth factor (VEGF/bFGF) caused marked increase in MMP-1 production and induced the pro-MMP-2 activation accompanied by the increase in MT1-MMP expression. However, pretreatment with flavonoids before VEGF/bFGF stimulation completely abolished the VEGF/bFGF-stimulated increase in MMP-1 and MT1-MMP expression and pro-MMP-2 activation. Genistein blocked VEGF/bFGF-stimulated increase in TIMP-1 expression and decrease in TIMP-2 expression. Apigenin and 3-hydroxyflavone further decreased TIMP-1 expression below basal level and completely abolished TIMP-2 expression. VEGF and bFGF stimulation also significantly induced uPA expression, most strikingly the level of 33 kDa uPA, and increased the expression of PA inhibitor (PAI)-1. Genistein, apigenin, and 3-hydroxyflavone effectively blocked the generation of 33 kDa uPA, and further decreased the activity of the 55 kDa uPA and the expression of PAI-1 below the basal level. In conclusion, these data suggest that genistein, apigenin, and 3-hydroxyflavone inhibit in vitro angiogenesis, in part via preventing VEGF/bFGF-induced MMP-1 and uPA expression and the activation of pro-MMP-2, and via modulating their inhibitors, TIMP-1 and -2, and PAI-1.  相似文献   

17.
Transformation of normal rat kidney fibroblasts (NRK) by the simian sarcoma virus (SSV) occurs as a result of expression of p28v-sis, a homologue of platelet-derived growth factor-B chain. Chromatographic separation revealed that the bulk (85%) of the mitogenic activity in SSV-transformed NRK cells was not due to p28v-sis but rather two distinct endothelial cell growth factors that eluted off heparin-Sepharose between 1 and 2 M NaCl. Protein purification and Northern blot analysis revealed that one of these growth factors was the 18 kd form of bFGF, the expression of which was found to increase 15-fold with SSV-transformation of NRK cells. The pure 18 Kd bFGF had no effect on NRK cell growth but was a potent neurotrophic agent for fetal rat cortical neurones and a potent growth factor for fetal bovine heart endothelial cells, suggesting a paracrine but not autocrine role for this protein. The second endothelial cell growth factor activity in SSV-transformed NRK cells was due to an 18 Kd protein which could be distinguished immunologically, biochemically, and mitogenically from bFGF.  相似文献   

18.
Human plasma contains three forms of adiponectin, a trimer, a hexamer, and a high-molecular-weight (HMW) multimer. We previously reported HMW adiponectin was a gelatin-binding protein of 28 kDa (GBP28), it having been purified due to its affinity to gelatin-Cellulofine (Nakano, Y., et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 1996. 120: 803–12). Although HMW adiponectin binds to gelatin-Cellulofine, it cannot bind to gelatin-Sepharose. Gelatin-Cellulofine was made of formyl-Cellulofine and gelatin, and we found that HMW adiponectin binds to reduced formyl-Cellulofine with similar affinity as to gelatin-Cellulofine. Through only two steps using reduced formyl-Cellulofine and DEAE-Sepharose, HMW adiponectin can be effectively purified from human plasma.  相似文献   

19.
We have examined the glycosylation of the basic fibroblast growth factor (bFGF) receptor to determine whether carbohydrates contribute to receptor structure and function. Using a combination of cross-linking and radioreceptor assays, we demonstrated that the two bFGF receptors in baby hamster kidney cells have protein cores of 100 and 125 kDa. They are glycosylated to high mannose forms of 115 and 140 kDa and further processed to their mature forms of 130 and 150 kDa. Because peptide:N-glycosidase F, but not endo-alpha-N-acetylgalactosamidase can reduce the size of the bFGF receptors, the carbohydrate residues of the receptor appear all N-linked. The inability of deglycosylated receptors to bind 125I-bFGF supports the notion that the carbohydrate residues are required for receptor function. Furthermore, the capacity of the wheat germ agglutinin lectin to inhibit 125I-bFGF binding and the biological activity of bFGF suggests that N-acetylglucosamine residues are functionally significant components of the receptor.  相似文献   

20.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号