首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Periodic breathing is commonly observed in chronic heart failure (CHF) when pulmonary capillary wedge pressure is abnormally high and there is usually concomitant tachypneic hyperventilation. We hypothesized that acute pulmonary hypertension at pressures encountered in CHF and involving all of the lungs and pulmonary vessels would predispose to apnea/unstable breathing during sleep. We tested this in a chronically instrumented, unanesthetized dog model during non-rapid eye movement (NREM) sleep. Pulmonary hypertension was created by partial occlusion of the left atrium by means of an implanted balloon catheter in the atrial lumen. Raising mean left atrial pressure by 5.7 +/- 1.1 Torr resulted immediately in tachypneic hyperventilation [breathing frequency increased significantly from 13.8 to 19.9 breaths/min; end-tidal P(CO2) (P(ET(CO2))) fell significantly from 38.5 to 35.9 Torr]. This tachypneic hyperventilation was present during wakefulness, NREM sleep, and rapid eye movement sleep. In NREM sleep, this increase in left atrial pressure increased the gain of the ventilatory response to CO2 below eupnea (1.3 to 2.2 l.min(-1).Torr(-1)) and thereby narrowed the CO2 reserve [P(ET(CO2)) (apneic threshold) - P(ET(CO2)) (eupnea)], despite the decreased plant gain resulting from the hyperventilation. We conclude that acute pulmonary hypertension during sleep results in a narrowed CO2 reserve and thus predisposes toward apnea/unstable breathing and may, therefore, contribute to the breathing instability observed in CHF.  相似文献   

3.
The essential role of carotid body chemoreceptors in sleep apnea   总被引:4,自引:0,他引:4  
Sleep apnea is attributable, in part, to an unstable ventilatory control system and specifically to a narrowed "CO2 reserve" (i.e., the difference in P(a)CO2 between eupnea and the apneic threshold). Findings from sleeping animal preparations with denervated carotid chemoreceptors or vascularly isolated, perfused carotid chemoreceptors demonstrate the critical importance of peripheral chemoreceptors to the ventilatory responses to dynamic changes in P(a)CO2. Specifically, (i) carotid body denervation prevented the apnea and periodic breathing that normally follow transient ventilatory overshoots; (ii) the CO2 reserve for peripheral chemoreceptors was about one half that for brain chemoreceptors; and (iii) hypocapnia isolated to the carotid chemoreceptors caused hypoventilation that persisted over time despite a concomitant, progressive brain respiratory acidosis. Observations in both humans and animals are cited to demonstrate the marked plasticity of the CO2 reserve and, therefore, the propensity for apneas and periodic breathing, in response to changing background ventilatory stimuli.  相似文献   

4.
5.
6.
Regulation of respiration in sleeping dogs   总被引:6,自引:0,他引:6  
  相似文献   

7.
8.
Our study was concerned with the effect of brain hypoxia on cardiorespiratory control in the sleeping dog. Eleven unanesthetized dogs were studied; seven were prepared for vascular isolation and extracorporeal perfusion of the carotid body to assess the effects of systemic [and, therefore, central nervous system (CNS)] hypoxia (arterial PO(2) = 52, 45, and 38 Torr) in the presence of a normocapnic, normoxic, and normohydric carotid body during non-rapid eye movement sleep. A lack of ventilatory response to systemic boluses of sodium cyanide during carotid body perfusion demonstrated isolation of the perfused carotid body and lack of other significant peripheral chemosensitivity. Four additional dogs were carotid body denervated and exposed to whole body hypoxia for comparison. In the sleeping dog with an intact and perfused carotid body exposed to specific CNS hypoxia, we found the following. 1) CNS hypoxia for 5-25 min resulted in modest but significant hyperventilation and hypocapnia (minute ventilation increased 29 +/- 7% at arterial PO(2) = 38 Torr); carotid body-denervated dogs showed no ventilatory response to hypoxia. 2) The hyperventilation was caused by increased breathing frequency. 3) The hyperventilatory response developed rapidly (<30 s). 4) Most dogs maintained hyperventilation for up to 25 min of hypoxic exposure. 5) There were no significant changes in blood pressure or heart rate. We conclude that specific CNS hypoxia, in the presence of an intact carotid body maintained normoxic and normocapnic, does not depress and usually stimulates breathing during non-rapid eye movement sleep. The rapidity of the response suggests a chemoreflex meditated by hypoxia-sensitive respiratory-related neurons in the CNS.  相似文献   

9.
10.
11.
Mechanisms of ventilatory acclimatization to chronic hypoxia remain unclear. To determine whether the sensitivity of peripheral chemoreceptors to hypoxia increases during acclimatization, we measured ventilatory and carotid sinus nerve responses to isocapnic hypoxia in seven cats exposed to simulated altitude of 15,000 ft (barometric pressure = 440 Torr) for 48 h. A control group (n = 7) was selected for hypoxic ventilatory responses matched to the preacclimatized measurements of the experimental group. Exposure to 48 h of hypobaric hypoxia produced acclimatization manifested as decrease in end-tidal PCO2 (PETCO2) in normoxia (34.5 +/- 0.9 Torr before, 28.9 +/- 1.2 after the exposure) as well as in hypoxia (28.1 +/- 1.9 Torr before, 21.8 +/- 1.9 after). Acclimatization produced an increase in hypoxic ventilatory response, measured as the shape parameter A (24.9 +/- 2.6 before, 35.2 +/- 5.6 after; P less than 0.05), whereas values in controls remained unchanged (25.7 +/- 3.2 and 23.1 +/- 2.7; NS). Hypoxic exposure was associated with an increase in the carotid body response to hypoxia, similarly measured as the shape parameter A (24.2 +/- 4.7 in control, 44.5 +/- 8.2 in acclimatized cats). We also found an increased dependency of ventilation on carotid body function (PETCO2 increased after unilateral section of carotid sinus nerve in acclimatized but not in control animals). These results suggest that acclimatization is associated with increased hypoxic ventilatory response accompanied by enhanced peripheral chemoreceptor responsiveness, which may contribute to the attendant rise in ventilation.  相似文献   

12.
Increased vasoconstrictor sensitivity in obstructive sleep apnea.   总被引:6,自引:0,他引:6  
We studied vasoconstrictor sensitivity and cholinergic responsiveness of the forearm vasculature in 10 male patients with obstructive sleep apnea (OSA) and 10 healthy controls. Subjects with regular medication, known arterial hypertension, diabetes mellitus, or dyslipidemia were not included in this study. Age, body mass index, blood pressure, blood glucose, serum lipids, and baseline forearm vascular conductance (derived from venous occlusion plethysmography and intra-arterial blood pressure measurement) did not differ significantly between these two groups. With use of three dosage steps each, angiotensin II and acetylcholine were successively infused into the brachial artery. During infusion of angiotensin II, mean conductance was 39.6% lower (P = 0.002) in the OSA patients compared with that in the control subjects. Vascular responsiveness to increasing dosages of acetylcholine was not significantly altered in the OSA group. These findings suggest an enhanced vasoconstrictor sensitivity in the forearm vasculature in OSA. The hypothesis that endothelial function in OSA is impaired independently of other cardiovascular risk factors is not supported by the present results.  相似文献   

13.
Smith, Curtis A., Craig A. Harms, Kathleen S. Henderson, andJerome A. Dempsey. Ventilatory effects of specific carotid bodyhypocapnia and hypoxia in awake dogs. J. Appl.Physiol. 82(3): 791-798, 1997.Specific carotidbody (CB) hypocapnia in the 10-Torr (less than eupneic) rangereduced ventilation in the awake and sleeping dog to the same degree asdid CB hyperoxia [CB PO2 (PCBO2);>500 Torr; C. A. Smith, K. W. Saupe, K. S. Henderson, and J. A. Dempsey. J. Appl. Physiol. 79:689-699, 1995], suggesting a powerful inhibitory effect ofhypocapnia at the carotid chemosensor over a range ofPCO2 encountered commonly inphysiological hyperpneas. The primary purpose of this study was toassess the ventilatory effect of CB hypocapnia on the ventilatoryresponse to concomitant CB hypoxia. The secondary purpose was to assess the relative gains of the CB and central chemoreceptors to hypocapnia. In eight awake female dogs the vascularly isolated CB was perfused withhypoxic blood (mild,PCBO2 50 Torr or severe, PCBO2 36 Torr) in a background of normocapnia or hypocapnia (10 Torr lessthan eupneic arterial PCO2) in theperfusate. The systemic (and brain) circulation was normoxicthroughout, and arterial PCO2 was notcontrolled (poikilocapnia). With CB hypocapnia, the peak ventilation(range 19-27 s) in response to hypoxic CB perfusion increased 48%(mild) and 77% (severe) due to increased tidal volume. When CBhypocapnia was present, these increases in ventilation were reduced to21 and 27%, respectively. With systemic hypocapnia, with the isolatedCB maintained normocapnic and hypoxic for >70 s, the steady-statepoikilocapnic ventilatory response (i.e., to systemic hypocapnia alone)decreased 15% (mild CB hypoxia) and 27% (severe CB hypoxia) from thepeak response, respectively. We conclude that carotid body hypocapniacan be a major source of inhibitory feedback to respiratory motoroutput during the hyperventilatory response to hypoxic carotid bodystimulation.

  相似文献   

14.
The relative importance of peripheral vs. central chemoreceptors in causing apnea/unstable breathing during sleep is unresolved. This has never been tested in an unanesthetized preparation with intact carotid bodies. We studied three unanesthetized dogs during normal sleep in a preparation in which intact carotid body chemoreceptors could be reversibly isolated from the systemic circulation and perfused. Apneic thresholds and the CO(2) reserve (end-tidal Pco(2) eupneic - end-tidal Pco(2) apneic threshold) were determined using a pressure support ventilation technique. Dogs were studied when both central and peripheral chemoreceptors sensed transient hypocapnia induced by the pressure support ventilation and again with carotid body isolation such that only the central chemoreceptors sensed the hypocapnia. We observed that the CO(2) reserve was congruent with4.5 Torr when the carotid chemoreceptors sensed the transient hypocapnia but more than doubled (>9 Torr) when only the central chemoreceptors sensed hypocapnia. Furthermore, the expiratory time prolongations observed when only central chemoreceptors were exposed to hypocapnia differed from those obtained when both the central and peripheral chemoreceptors sensed the hypocapnia in that they 1) were substantially shorter for a given reduction in end-tidal Pco(2), 2) showed no stimulus: response relationship with increasing hypocapnia, and 3) often occurred at a time (>45 s) beyond the latency expected for the central chemoreceptors. These findings agree with those previously obtained using an identical pressure support ventilation protocol in carotid body-denervated sleeping dogs (Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. J Appl Physiol 94: 155-164, 2003). We conclude that hypocapnia sensed at the carotid body chemoreceptor is required for the initiation of apnea following a transient ventilatory overshoot in non-rapid eye movement sleep.  相似文献   

15.
16.
Atrial natriuretic peptide (ANP) and its analog,atriopeptin III (APIII), inhibit carotid body chemoreceptor nerveactivity evoked by hypoxia. In the present study, we have examined the hypothesis that the inhibitory effects of ANP and APIII are mediated bycyclic GMP and protein kinase G (PKG) via the phosphorylation and/ordephosphorylation of K+ and Ca2+ channelproteins that are involved in regulating the response of carotid bodychemosensory type I cells to low-O2 stimuli. In freshlydissociated rabbit type I cells, we examined the effects of a PKGinhibitor, KT-5823, and an inhibitor of protein phosphatase 2A (PP2A),okadaic acid (OA), on K+ and Ca2+ currents. Wealso investigated the effects of these specific inhibitors onintracellular Ca2+ concentration and carotid sinus nerve(CSN) activity under normoxic and hypoxic conditions. Voltage-dependentK+ currents were depressed by hypoxia, and this effect wassignificantly reduced by 100 nM APIII. The effect of APIII on thiscurrent was reversed in the presence of either 1 µM KT-5823 or 100 nMOA. Likewise, these drugs retarded the depression of voltage-gated Ca2+ currents induced by APIII. Furthermore, APIIIdepressed hypoxia-evoked elevations of intracellular Ca2+,an effect that was also reversed by OA and KT-5823. Finally, CSNactivity evoked by hypoxia was decreased in the presence of 100 nMAPIII, and was partially restored when APIII was presented along with100 nM OA. These results suggest that ANP initiates a cascade of eventsinvolving PKG and PP2A, which culminates in the dephosphorylation ofK+ and Ca2+ channel proteins in thechemosensory type I cells.

  相似文献   

17.
18.
We hypothesized that chronic intermittent hypoxia (CIH) would induce a predisposition to apnea in response to induced hypocapnia. To test this, we used pressure support ventilation to quantify the difference in end-tidal partial pressure of CO(2) (Pet(CO(2))) between eupnea and the apneic threshold ("CO(2) reserve") as an index of the propensity for apnea and unstable breathing during sleep, both before and following up to 3-wk exposure to chronic intermittent hypoxia in dogs. CIH consisted of 25 s of Pet(O(2)) = 35-40 Torr followed by 35 s of normoxia, and this pattern was repeated 60 times/h, 7-8 h/day for 3 wk. The CO(2) reserve was determined during non-rapid eye movement sleep in normoxia 14-16 h after the most recent hypoxic exposure. Contrary to our hypothesis, the slope of the ventilatory response to CO(2) below eupnea progressively decreased during CIH (control, 1.36 +/- 0.18; week 2, 0.94 +/- 0.12; week 3, 0.73 +/- 0.05 l.min(-1).Torr(-1), P < 0.05). This resulted in a significant increase in the CO(2) reserve relative to control (P < 0.05) following both 2 and 3 wk of CIH (control, 2.6 +/- 0.6; week 2, 3.7 +/- 0.8; week 3, 4.5 +/- 0.9 Torr). CIH also 1) caused no change in eupneic, air breathing Pa(CO(2)); 2) increased the slope of the ventilatory response to hypercapnia after 2 wk but not after 3 wk compared with control; and 3) had no effect on the ventilatory response to hypoxia. We conclude that 3-wk CIH reduced the sensitivity of the ventilatory response to transient hypocapnia and thereby increased the CO(2) reserve, i.e., the propensity for apnea was reduced.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号