首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
钩藤碱对human ether-a-go-go相关基因通道的抑制作用   总被引:1,自引:0,他引:1  
Gui L  Li ZW  Du R  Yuan GH  Li W  Ren FX  Li J  Yang JG 《生理学报》2005,57(5):648-652
将human ether-a-go-go相关基因(HERG)cRNA注射到非洲爪蟾卵母细胞,采用双电极电压钳技术,观察钩藤碱对表达电流的影响.结果显示(1)钩藤碱抑制HERG通道的表达是浓度依赖性的,IC50为(773.4±42.5)μmol/L.(2)钩藤碱抑制HERG通道的表达是电压依赖性的,最大抑制率在-20 mV,为15%.上述结果提示,钩藤碱抑制HERG编码的钾通道,导致心室复极时间延长,揭示了与钩藤碱相关的心肌钾通道的分子生物学基础.  相似文献   

2.
Tu DN  Zou AR  Liao YH  Du YM  Wang XP  Li L 《生理学报》2008,60(4):525-534
采用双电极电压钳技术,研究酮色林对表达在非洲爪蟾卵母细胞上的野生型和Y652突变型人类ether-a-go-go相关基因(human ether-a-go-go-related gene,HERG)钾通道的阻断效应,观测HERG通道的分子位点特性改变对其阻断效应的影响.结果显示,酮色林以电压依赖性和浓度依赖性的方式阻断野生型的HERG钾通道电流.尾电流包裹程序记录电流显示酮色林对HERG钾通道微小的张力性阻断.阻断特征符合对开放状态通道的阻断特征.酮色林也能调节失活状态的HERG钾通道.位于孔道S6区的氨基酸位点突变Y652A和Y652R可显著减弱酮色林对HERG通道的阻断作用.同野生犁HERG钾通道的阻断相比,Y652A突变使阻断的IC50提高72倍,而Y652R突变使阻断的IC50提高53倍.Y652A和Y652R的阴断效应之间没有明显的差别.以上结果提示,酮色林优先阻断开放状态的HERG钾通道,而Y652是酮色林与通道结合的关键位点之一.  相似文献   

3.
Class Ia antiarrhythmic drugs, including procainamide (PROC), are associated with cardiac sodium channel blockade, delayed ventricular repolarisation and with a risk of ventricular pro-arrhythmia. The HERG K(+) channel is frequently linked to drug-induced pro-arrhythmia. Therefore, in this study, interactions between PROC and HERG K(+) channels were investigated, with particular reference to potency and mechanism of drug action. Whole-cell patch-clamp recordings of HERG current (I(HERG)) were made at 37 degrees C from human embryonic kidney (HEK 293) cells stably expressing the HERG channel. Following activating pulses to +20 mV, I(HERG) tails were inhibited by PROC with an IC(50) value of approximately 139 microM. I(HERG) blockade was found to be both time- and voltage-dependent, demonstrating contingency upon HERG channel gating. However, I(HERG) inhibition by PROC was relieved by depolarisation to a highly positive membrane potential (+80 mV) that favoured HERG channel inactivation. These data suggest that PROC inhibits the HERG K(+) channel by a primarily 'open' or 'activated' channel state blocking mechanism and that avidity of drug-binding is decreased by extensive I(HERG) inactivation. The potency of I(HERG) blockade by PROC is much lower than for other Class Ia agents that have been studied previously under analogous conditions (quinidine and disopyramide), although the blocking mechanism appears similar. Thus, differences between the chemical structure of PROC and other Class Ia antiarrhythmic drugs may help provide insight into chemical determinants of blocking potency for agents that bind to open/activated HERG channels.  相似文献   

4.
Jo SH  Hong HK  Chong SH  Choe H 《Life sciences》2008,82(5-6):331-340
Protriptyline, a tricyclic antidepressant for psychiatric disorders, can induce prolonged QT, torsades de pointes, and sudden death. We studied the effects of protriptyline on human ether-à-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells. Protriptyline induced a concentration-dependent decrease in current amplitudes at the end of the voltage steps and HERG tail currents. The IC(50) for protriptyline block of HERG current in Xenopus oocytes progressively decreased relative to the degree of depolarization, from 142.0 microM at -40 mV to 91.7 microM at 0 mV to 52.9 microM at +40 mV. The voltage dependence of the block could be fit with a monoexponential function, and the fractional electrical distance was estimated to be delta=0.93. The IC(50) for the protriptyline-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 1.18 microM at +20 mV. Protriptyline affected channels in the activated and inactivated states, but not in the closed states. HERG blockade by protriptyline was use-dependent, exhibiting a more rapid onset and a greater steady-state block at higher frequencies of activation. Our findings suggest that inhibition of HERG currents may contribute to the arrhythmogenic side effects of protriptyline.  相似文献   

5.
A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulation by potassium, and distinctive biphasic inhibition by the class III antiarrhythmic E-4031. Three missense mutations associated with long QT syndrome and ventricular fibrillation are identified in the gene for MiRP1. Mutants form channels that open slowly and close rapidly, thereby diminishing potassium currents. One variant, associated with clarithromycin-induced arrhythmia, increases channel blockade by the antibiotic. A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors.  相似文献   

6.
We investigated the role of protein kinase A (PKA) in regulation of the human ether-a-go-go-related gene (HERG) potassium channel activation. HERG clones with single mutations destroying one of four consensus PKA phosphorylation sites (S283A, S890A, T895A, S1137A), as well as one clone carrying all mutations with no PKA phosphorylation sites (HERG 4M) were constructed. These clones were expressed heterologously in Xenopus oocytes, and HERG potassium currents were measured with the two microelectrode voltage clamp technique. Application of the cAMP-specific phosphodiesterase (PDE IV) inhibitor Ro-20-1724 (100 microM), which results in an increased cAMP level and PKA stimulation, induced a reduction of HERG wild type outward currents by 19.1% due to a shift in the activation curve of 12.4 mV. When 100 microM Ro-20-1724 was applied to the HERG 4M channel, missing all PKA sites, there was no significant shift in the activation curve, and the current amplitude was not reduced. Furthermore, the adenylate cyclase activator forskolin that leads to PKA activation (400 microM, 60 min), shifted HERG wild type channel activation by 14.1 mV and reduced currents by 39.9%, whereas HERG 4M channels showed only a small shift of 4.3 mV and a weaker current reduction of 22.3%. We conclude that PKA regulates HERG channel activation, and direct phosphorylation of the HERG channel protein has a functional role that may be important in regulation of cardiac repolarization.  相似文献   

7.
Mutations in the potassium channel encoded by the human ether-a-go-go-related gene (HERG) have been linked to the congenital long QT syndrome (LQTS), a cardiac disease associated with an increased preponderance of ventricular arrhythmias and sudden death. The COOH terminus of HERG harbors a large number of LQTS mutations and its removal prevents functional expression for reasons that remain unknown. In this study, we show that the COOH terminus of HERG is required for normal trafficking of the ion channel. We have identified a region critical for trafficking between residues 860 and 899 that includes a novel missense mutation at amino acid 861 (HERGN861I). Truncations or deletion of residues 860-899, characterized in six different expression systems including a cardiac cell line, resulted in decreased expression levels and an absence of the mature glycosylated form of the HERG protein. Deletion of this region did not interfere with the formation of tetramers but caused retention of the assembled ion channels within the endoplasmic reticulum. Consequently, removal of residues 860-899 resulted in the absence of the ion channels from the cell surface and a more rapid turnover rate than the wild type channels, which was evident very early in biogenesis. This study reveals a novel role of the COOH terminus in the normal biogenesis of HERG channels and suggests defective trafficking as a common mechanism for abnormal channel function resulting from mutations of critical COOH-terminal residues, including the LQTS mutant HERGN861I.  相似文献   

8.
The acquired form of the long-QT syndrome (LQTS) is a major safety consideration for the development and subsequent use of both cardiac and non-cardiac drugs; it is usually associated with pharmacological inhibition of cardiac HERG-encoded potassium channels. Clomiphene is an anti-estrogen agent used extensively in the treatment of infertility and is not associated with a risk of QT interval prolongation, in contrast to a structurally related compound tamoxifen. We describe here a potent inhibitory effect (IC(50) = 0.18 microM) of clomiphene on HERG ionic current (I(HERG)) recorded from a mammalian cell line expressing HERG channels. Inhibition of I(HERG) by clomiphene showed voltage-dependence and developed quickly following membrane depolarisation, indicating contingency of block on HERG channel gating. At 100 nM, clomiphene and the related anti-estrogen tamoxifen produced similar levels of I(HERG) blockade (p > 0.05). Experiments on guinea-pig isolated perfused hearts revealed that, despite its inhibitory action on I(HERG), clomiphene produced no significant effect at 1 microM on uncorrected QT interval (p > 0.1) nor on rate-corrected QT interval (QT(c); p > 0.1 for QT(c) determined using Van de Water's formula). The disparity between clomiphene's potent I(HERG) inhibition and its lack of effect on the QT interval underscores the notion that I(HERG) pharmacology may best be used alongside other screening methods when investigating the QT-prolonging tendency and related cardiotoxicity of non-cardiac drugs.  相似文献   

9.
Pharmacological inhibition of human-ether-a-go-go-related gene (HERG) K(+) channels by structurally and therapeutically diverse drugs is associated with the 'acquired' form of long QT syndrome and with potentially lethal cardiac arrhythmias. Two aromatic amino-acid residues (Y652 and F656) on the inner (S6) helices are considered to be key constituents of a high affinity drug binding site within the HERG channel pore cavity. Using wild-type (WT) and mutant HERG channels expressed in mammalian cell lines, we have investigated HERG channel current (I(HERG)) blockade at 37+/-1 degrees C by dronedarone (DRONED), a non-iodinated analogue of the Class III antiarrhythmic agent amiodarone (AMIOD). Under our conditions WT I(HERG) tails, measured at -40 mV following activating pulses to +30 mV, were blocked with IC(50) values of approximately 59 and 70 nM for DRONED and AMIOD, respectively. I(HERG) inhibition by DRONED was contingent upon channel gating, with block developing rapidly on membrane depolarization, but with no preference for activated over inactivated channels. High external [K(+)] (94 mM) reduced the potency of I(HERG) inhibition by both DRONED and AMIOD. Strikingly, mutagenesis to alanine of the S6 residue F656 (F656A) failed to eliminate blockade by both DRONED and AMIOD, whilst Y652A had comparatively little effect on DRONED but some effect on AMIOD. These findings demonstrate that high affinity drug blockade of I(HERG) can occur without a strong dependence on the Y652 and F656 aromatic amino-acid residues.  相似文献   

10.
Currents carried by L-, N-, and P/Q-type calcium channels do not account for the total calcium current in myenteric neurons. This study identified all calcium channels expressed by guinea pig small intestinal myenteric neurons maintained in primary culture. Calcium currents were recorded using whole cell techniques. Depolarizations (holding potential = -70 mV) elicited inward currents that were blocked by CdCl(2) (100 microM). Combined application of nifedipine (blocks L-type channels), Omega-conotoxin GVIA (blocks N-type channels), and Omega-agatoxin IVA (blocks P/Q-type channels) inhibited calcium currents by 56%. Subsequent addition of the R-type calcium channel antagonists, NiCl(2) (50 microM) or SNX-482 (0.1 microM), abolished the residual calcium current. NiCl(2) or SNX-482 alone inhibited calcium currents by 46%. The activation threshold for R-type calcium currents was -30 mV, the half-activation voltage was -5.2 +/- 5 mV, and the voltage sensitivity was 17 +/- 3 mV. R-type currents activated fully in 10 ms at 10 mV. R-type calcium currents inactivated in 1 s at 10 mV, and they inactivated (voltage sensitivity of 16 +/- 1 mV) with a half-inactivation voltage of -76 +/- 5 mV. These studies have accounted for all of the calcium channels in myenteric neurons. The data indicate that R-type calcium channels make the largest contribution to the total calcium current in myenteric neurons. The relatively positive half-activation voltage and rapid activation kinetics suggest that R-type channels could contribute to calcium entry during somal action potentials or during action potential-induced neurotransmitter release.  相似文献   

11.
Cardiac repolarization is under joint control of the slow (IKs) and rapid (IKr) delayed rectifier currents. Experimental and clinical evidence indicates important functional interactions between these components. We hypothesized that there might be more direct interactions between the KvLQT1 and HERG alpha-subunits of IKs and IKr and tested this notion with a combination of biophysical and biochemical techniques. Co-expression of KvLQT1 with HERG in a mammalian expression system significantly accelerated HERG current deactivation at physiologically relevant potentials by increasing the contribution of the fast component (e.g. upon repolarization from +20 mV to -50 mV: from 20 +/- 3 to 32 +/- 5%, p < 0.05), making HERG current more like native IKr. In addition, HERG current density was approximately doubled (e.g. tail current after a step to +10 mV: 18 +/- 3 versus 39 +/- 7 pA/picofarad, p < 0.01) by co-expression with KvLQT1. KvLQT1 co-expression also increased the membrane immunolocalization of HERG by approximately 2-fold (p < 0.05). HERG and KvLQT1 co-immunolocalized in canine ventricular myocytes and co-immunoprecipitated in cultured Chinese hamster ovary cells as well as in native cardiac tissue, indicating physical interactions between HERG and KvLQT1 proteins in vitro and in vivo. Protein interaction assays also demonstrated binding of KvLQT1 (but not another K+ channel alpha-subunit, Kv3.4) to a C-terminal HERG glutathione S-transferase fusion protein. Co-expression with HERG did not affect the membrane localization or ionic current properties of KvLQT1. This study shows that the alpha-subunit of IKs can interact with and modify the localization and current-carrying properties of the alpha-subunit of IKr, providing potentially novel insights into the molecular function of the delayed rectifier current system.  相似文献   

12.
The vasoactive effects of nicotine on isolated rat tail artery tissues were studied. Nicotine transiently contracted rat tail artery tissues (EC50, 55.6 +/- 2 microM) in an extracellular Ca2+ dependent and endothelium-independent fashion. The blockade of alpha1-adrenoceptors, but not alpha2-adrenoceptors or P2X purinoceptors, inhibited the nicotine-induced contraction by 38 +/- 7% (p < 0.05). Nicotine (1 mM) depolarized membrane by 13 +/- 3 mV, but did not affect L-type Ca2+ channel currents, of the isolated rat tail artery smooth muscle cells. The phenylephrine-precontracted tail artery tissues were relaxed by nicotine (EC50, 0.90 +/- 0.31 mM), which was significantly inhibited after the blockade of nicotinic receptors. Simultaneous removal of phenylephrine and nicotine, after a complete relaxation of the phenylephrine-precontracted tail artery strips was achieved by nicotine at accumulated concentrations (> or =10 mM), triggered a Ca2+-dependent rebound long-lasting vasoconstriction (n = 20). This rebound contraction was abolished in the absence of calcium or in the presence of tetracaine in the bath solution. Pretreatment of vascular tissues with a nicotinic receptor antagonist did not affect the nicotine-induced vasoconstriction or nicotine withdrawal induced rebound contraction. The elucidation of the triphasic vascular effects of nicotine and the underlying mechanisms is important for a better understanding of the complex vascular actions of nicotine.  相似文献   

13.
JP Johnson  Jr  JR Balser    PB Bennett 《Biophysical journal》1999,77(5):2534-2541
We have studied the functional effects of extracellular Cd(2+) on human ether-a-go-go-related gene (HERG) encoded K(+) channels. Low concentrations (10-200 &mgr;M) of extracellular Cd(2+) increased outward currents through HERG channels; 200 &mgr;M Cd(2+) more than doubled HERG currents and altered current kinetics. Cd(2+) concentrations up to 200 &mgr;M did not change the voltage dependence of channel activation, but shifted the voltage dependence of inactivation to more depolarized membrane potentials. Cd(2+) concentrations >/=500 &mgr;M shifted the voltage dependence of channel activation to more positive potentials. These results are consistent with a somewhat specific ability of Cd(2+) to destabilize the inactivated state. We tested the hypothesis that channel inactivation is essential for Cd(2+)-induced increases in HERG K(+) currents, using a double point mutation (G628C/S631C) that diminishes HERG inactivation (Smith, P. L., T. Baukrowitz, and G. Yellen. 1996. Nature (Lond.). 379:833-836). This inactivation-removed mutant is insensitive to low concentrations of Cd(2+). Thus, Cd(2+) had two distinct effects on HERG K(+) channels. Low concentrations of Cd(2+) caused relatively selective effects on inactivation, resulting in a reduction of the apparent rectification of the channel and thereby increasing HERG K(+) currents. Higher Cd(2+) concentrations affected activation gating as well, possibly by a surface charge screening mechanism or by association with a lower affinity site.  相似文献   

14.
The mechanism of human ether-à-go-go-related gene (HERG) K+ channel blockade by the antifungal agent ketoconazole was investigated using patch-clamp recording from mammalian cell lines. Ketoconazole inhibited whole-cell HERG current (IHERG) with a clinically relevant half-maximal inhibitory drug concentration (IC50) value of 1.7 microM. The voltage- and time-dependent characteristics of IHERG blockade by ketoconazole indicated dependence of block on channel gating, ruling out a significant role for closed-state channel inhibition. The S6 HERG mutations Y652A and F656A produced approximately 4-fold and approximately 21-fold increases in IC50 for IHERG blockade, respectively. Thus, ketoconazole accesses the HERG channel pore-cavity on channel gating, and the S6 residue F656 is an important determinant of ketoconazole binding.  相似文献   

15.
The chromosome 7-linked form of congenital long QT syndrome (LQT2) is caused by mutations in the human ether-a-go-go-related gene (HERG) that encodes the rapidly activating delayed rectifier potassium channel. One mechanism for the loss of normal channel function in LQT2 is defective protein trafficking, which results in the failure of the channel protein to reach the plasma membrane. Here we show that the N470D LQT2 mutant protein is trafficking-deficient when expressed at 37 degrees C in HEK293 cells, whereas at 27 degrees C its trafficking to the plasma membrane and channel function are markedly improved. We further show that the antiarrhythmic drug E-4031, which selectively blocks HERG channels, also corrects defective protein trafficking of the N470D mutant and can restore the generation of HERG current. Similar findings were obtained with the drugs astemizole and cisapride, as well as with high concentrations of glycerol. The effect of E-4031 on HERG protein trafficking was concentration-dependent and required low drug concentrations (saturation present at 5 microM), developed rapidly with drug exposure, and occurred post-translationally. These findings suggest that protein misfolding leading to defective trafficking of some HERG LQT mutations may be corrected by specific pharmacological strategies.  相似文献   

16.
Zünkler BJ  Wos M 《Life sciences》2003,73(4):429-435
In patients administered lomefloxacin alterations in blood glucose concentrations have been observed in some cases and lomefloxacin has previously been shown to augment insulin release from rat pancreatic islets at micromolar concentrations. The aim of the present study was to compare the effects of two structurally related fluoroquinolones, lomefloxacin and norfloxacin, on ATP-sensitive K(+) (K(ATP)) currents from the clonal insulinoma cell line RINm5F using the whole-cell configuration of the patch-clamp technique. The application of lomefloxacin concentration-dependently blocked K(ATP) currents from RINm5F cells with a half-maximally inhibitory concentration of 81 microM, whereas the application of norfloxacin (at concentrations up to 300 microM) had only minor effects on K(ATP) currents. Block of pancreatic beta-cell K(ATP) currents could be mediated by interaction of lomefloxacin either with the regulatory subunit (SUR1) or with the pore-forming subunit (Kir6.2). We favour the latter hypothesis, since some fluoroquinolones have recently been shown to block the pore-forming subunit of the cardiac rapid delayed rectifier K(+) current I(Kr) (which is encoded by HERG (human ether-a-go-go-related gene)). Thus, as demonstrated for cardiac HERG channels in previous studies and for pancreatic beta-cell K(ATP) channels in the present study, fluoroquinolones differ markedly in their potencies to inhibit K(+) channel activity.  相似文献   

17.
Potassium channels at the cardiomyocyte surface must eventually be internalized and degraded, and changes in cardiac potassium channel expression are known to occur during myocardial disease. It is not known which trafficking pathways are involved in the control of cardiac potassium channel surface expression, and it is not clear whether all cardiac potassium channels follow a common pathway or many pathways. In the present study we have surveyed the role of retrograde microtubule-dependent transport in modulating the surface expression of several cardiac potassium channels in ventricular myocytes and heterologous cells. The disruption of microtubule transport in rat ventricular myocytes with nocodazole resulted in significant changes in potassium currents. A-type currents were enhanced 1.6-fold at +90 mV, rising from control densities of 20.9 +/- 2.8 to 34.0 +/- 5.4 pA/pF in the nocodazole-treated cells, whereas inward rectifier currents were reduced by one-third, perhaps due to a higher nocodazole sensitivity of Kir channel forward trafficking. These changes in potassium currents were associated with a significant decrease in action potential duration. When expressed in heterologous human embryonic kidney (HEK-293) cells, surface expression of Kv4.2, known to substantially underlie A-type currents in rat myocytes, was increased by nocodazole, by the dynein inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride, and by p50 overexpression, which specifically interferes with dynein motor function. Peak current density was 360 +/- 61.0 pA/pF in control cells and 658 +/- 94.5 pA/pF in cells overexpressing p50. The expression levels of Kv2.1, Kv3.1, human ether-a-go-go-related gene, and Kir2.1 were similarly increased by p50 overexpression in this system. Thus the regulation of potassium channel expression involves a common dynein-dependent process operating similarly on the various channels.  相似文献   

18.
Protein-protein interaction plays a key role in the regulation of biological processes. The human potassium (HERG) channel is encoded by the ether-à-go-go-related gene (herg), and its activity may be regulated by association with other cellular proteins. To identify cellular proteins that might play a role in the regulation of the HERG channel, we screened a human heart cDNA library with the N terminus of HERG using a yeast 2-hybrid system, and identified caveolin-1 as a potential HERG partner. The interaction between these 2 proteins was confirmed by coimmunoprecipitation assay, and their overlapping subcellular localization was demonstrated by fluorescence immunocytochemistry. The physiologic implication of the protein-protein interaction was studied in whole-cell patch-clamp electrophysiology experiments. A significant increase in HERG current amplitude and a faster deactivation of tail current were observed in HEK293/HERG cells in a membrane lipid rafts disruption model and caveolin-1 knocked down cells by RNA interference. Alternatively, when caveolin-1 was overexpressed, the HERG current amplitude was significantly reduced and the tail current was deactivated more slowly. Taken together, these data indicate that HERG channels interact with caveolin-1 and are negatively regulated by this interaction. The finding from this study clearly demonstrates the regulatory role of caveolin-1 on HERG channels, and may help to understand biochemical events leading to arrhythmogenesis in the long QT syndrome in cardiac patients.  相似文献   

19.
Gating of Shaker K+ channels: I. Ionic and gating currents.   总被引:3,自引:1,他引:2       下载免费PDF全文
Ionic and gating currents from noninactivating Shaker B K+ channels were studied with the cut-open oocyte voltage clamp technique and compared with the macropatch clamp technique. The performance of the cut-open oocyte voltage clamp technique was evaluated from the electrical properties of the clamped upper domus membrane, K+ tail current measurements, and the time course of K+ currents after partial blockade. It was concluded that membrane currents less than 20 microA were spatially clamped with a time resolution of at least 50 microseconds. Subtracted, unsubtracted gating currents with the cut-open oocyte voltage clamp technique and gating currents recorded in cell attached macropatches had similar properties and time course, and the charge movement properties directly obtained from capacity measurements agreed with measurements of charge movement from subtracted records. An accurate estimate of the normalized open probability Po(V) was obtained from tail current measurements as a function of the prepulse V in high external K+. The Po(V) was zero at potentials more negative than -40 mV and increased sharply at this potential, then increased continuously until -20 mV, and finally slowly increased with voltages more positive than 0 mV. Deactivation tail currents decayed with two time constants and external potassium slowed down the faster component without affecting the slower component that is probably associated with the return between two of the closed states near the open state. In correlating gating currents and channel opening, Cole-Moore type experiments showed that charge moving in the negative region of voltage (-100 to -40 mV) is involved in the delay of the conductance activation but not in channel opening. The charge moving in the more positive voltage range (-40 to -10 mV) has a similar voltage dependence to the open probability of the channel, but it does not show the gradual increase with voltage seen in the Po(V).  相似文献   

20.
The HERG potassium channel might have a non-canonical drug binding site, distinct from the channel's inner cavity, that could be responsible for elements of closed-state pharmacological inhibition of the channel. The macrolide antibiotic erythromycin is a drug that may block unconventionally because of its size. Here we used whole-cell patch-clamp recording at 37 degrees C from heterologously expressed HERG channels in a mammalian cell line to show that erythromycin either produces a rapid open-state-dependent HERG channel inhibition, or components of both open-state-dependent and closed-state-dependent inhibition. Alanine-substitution of HERG's canonical determinants of blockade revealed that Y652 was not important as a molecular determinant of blockade, and that mutation of F656 resulted in only weak attenuation of inhibition. In computer models of the channel, erythromycin could make several direct contacts with F656, but not with Y652, in the open-state model, and erythromycin was unable to fit into a closed-state channel model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号