首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor suppressor p53 has been implicated in cell stress response and determines cell fate of either growth arrest or apoptosis. Heat shock proteins (Hsps) expressed under stress usually confer survival protection to the cell or interruption in the apoptotic pathways. Although Hsp90 can physically interact with p53, whether or not the hsp90 gene is influenced downstream of p53 in UV irradiation-induced apoptosis remains unclear. We have found that the level of p53 is elevated with the decline of Hsp90 in UV-irradiated cells and that malfunction of Hsp90, as inhibited by geldanamycin, enhances the p53-involved UV irradiation-induced apoptosis. In addition, the expression of the hsp90beta gene was reduced in both UV-irradiated and wild type p53-transfected cells. These results suggest a negative correlation between the trans factor p53 and a chaperone gene hsp90beta in apoptotic cells. Mutation analysis demonstrated that the p53 binding site in the first exon was indispensable for p53 regulation on the hsp90beta gene. In addition, with p53 bound at the promoter of the hsp90beta gene, mSin3a and p300 were differentially recruited in UV irradiation-treated or untreated Jurkat cells in vivo. The evidence of p53-repressed hsp90beta gene expression in UV-irradiated cells shed light on a novel pathway of Hsp90 in the survival control of the stressed cells.  相似文献   

2.
Heat stress tolerance was examined in the thermophilic enteric yeast Arxiozyma telluris. Heat shock acquisition of thermotolerance and synthesis of heat shock proteins hsp 104, hsp 90, hsp 70, and hsp 60 were induced by a mild heat shock at temperatures from 35 to 40°C for 30 min. The results demonstrate that a yeast which occupies a specialized ecological niche exhibits a typical heat shock response.  相似文献   

3.
BC-8, a rat histiocytoma undergoes apoptosis after heat shock, which is due to lack of an effective heat shock response. Heat shock induced generation of free radicals, which in turn are involved in the induction of apoptotic death in BC-8 cells. Treatment of BC-8 cells with N-acetylcysteine partially inhibited the heat induced apoptosis. Introduction of Bcl-2 gene in these cells did not protect them from apoptotic death, whereas transfection with hsp-70 gene did render these cells resistant to heat induced apoptosis transiently. Heat shock also downregulated the expression of Bcl-2 and p53 in these cells. These observations suggested that the heat shock induced apoptosis was mediated through reactive oxygen species and controlled upstream of Bcl-2 check point.  相似文献   

4.
Heat shock proteins (hsp(s)) have been postulated to interact with APCs through specific receptors, although the receptors are yet to be identified. Specificity, saturation, and competition are the three defining attributes of a receptor-ligand interaction. We demonstrate here that the interaction of the heat shock proteins gp96 and hsp90 with CD11b+ cells is specific and saturable and that gp96 can compete with itself in gp96-macrophage interaction. Interestingly, the phylogenetically related hsp90 also competes quite effectively with gp96 for binding to macrophages, whereas the unrelated hsp70 does so relatively poorly, although it binds CD11b+ cells just as effectively. These data provide evidence that the heat shock proteins interact with APCs with specificity and for the existence of at least two distinct receptors, one for gp96 and hsp90 and the other for hsp70.  相似文献   

5.
Heat shock protein hsp27 is a molecular chaperone and identification of hsp27-binding proteins might help to elucidate its functional role in keratinocyte biology. In the present investigation we used a human epidermal cell carcinoma cell line (A431) transfected with hsp27 (A431/16) to study interference between hsp27 protein and other proteins. Immunoprecipitation experiments with anti-hsp27 antibody revealed a multicomponent complex when analysed by silver staining. By immunoblotting analysis we could demonstrate that hsp27 associates with actin, the mutant form of p53, hsp70 and hsp90. Immunofluorescence analysis showed a co-localization between hsp27 and p53, hsp70 and hsp90. To control for the specificity of the observed interactions, immuno-precipitations with antibodies to actin, p53, hsp70 and hsp90 respectively, were performed. All of the tested proteins demonstrated a coimmunoprecipitation with hsp27. We conclude that hsp27, like the other heat shock proteins, is part of a complex system of molecular chaperones in epidermal keratinocytes.  相似文献   

6.
A P Arrigo  M R Michel 《FEBS letters》1991,282(1):152-156
Heat shock or tumor necrosis factor rapidly stimulated the phosphorylation of the mammalian low molecular weight stress protein hsp28. We have found that both phenomena are greatly decreased in cells which are made tolerant to heat. This observation correlated with a better survival of thermotolerant cells exposed to either heat or TNF treatment. The results suggest that the phosphorylation of hsp28 may be linked to the resistance of the cells to the deleterious effects induced by either heat or a mediator of inflammation such as TNF.  相似文献   

7.
The ataxia-telangiectasia mutated (ATM) protein kinase is activated in response to ionizing radiation (IR) and activates downstream DNA-damage signaling pathways. Although the role of ATM in the cellular response to ionizing radiation has been well characterized, its role in response to other DNA-damaging agents is less well defined. We previously showed that genistein, a naturally occurring isoflavonoid, induced increased ATM protein kinase activity, ATM-dependent phosphorylation of p53 on serine 15 and activation of the DNA-binding properties of p53. Here, we show that genistein also induces phosphorylation of p53 at serines 6, 9, 20, 46, and 392, and that genistein-induced accumulation and phosphorylation of p53 is reduced in two ATM-deficient human cell lines. Also, we show that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 139. The related bioflavonoids, daidzein and biochanin A, did not induce either phosphorylation of p53 or ATM at these sites. Like genistein, quercetin induced phosphorylation of ATM on serine 1981, and ATM-dependent phosphorylation of histone H2AX on serine 139; however, p53 accumulation and phosphorylation on serines 6, 9, 15, 20, 46, and 392 occurred in ATM-deficient cells, indicating that ATM is not required for quercetin-induced phosphorylation of p53. Our data suggest that genistein and quercetin induce different DNA-damage induced signaling pathways that, in the case of genistein, are highly ATM-dependent but, in the case of quercetin, may be ATM-dependent only for some downstream targets.  相似文献   

8.
9.
To elucidate a role for heat shock proteins in islet function, isolated pancreatic islets were labeled with [35S]methionine after control, heat shock, or interleukin 1 beta (IL-1 beta) treatment, extracted in the presence of detergent, and then passed over affinity columns with antibodies against heat shock protein 70 (hsp 70), hsp 70 itself, or ATP conjugated to the columns. In control or IL-1 beta-treated islets, the antibody column efficiently absorbed hsp 70 together with two other proteins of molecular masses 46 and 53 kDa. In extracts from heat-shocked cells, the binding of cellularly synthesized hsp 70 to the antibody column was inefficient but improved by the addition of unlabeled partially purified hsp 70 to the extracts. When assessing the binding of proteins in the extracts to the hsp 70 column, hsp 70 and the 46- and 53-kDa proteins among others all bound to the column. No differences in the patterns of binding to the hsp 70 column between extracts from the different islet exposures were noticed. The 46-kDa protein was identified as actin by immunoblot analysis. ATP-agarose column chromatography revealed a pattern of binding similar to that of the hsp 70 column. It is concluded that hsp 70 contains at least two functional domains, one adjacent to the epitope recognized by the antibody and active in restoring cellular function after heat shock, whereas the other has the ability to bind the 46- and 53-kDa and possibly other proteins. Furthermore, the stress induced by heat shock differs significantly from that after IL-1 beta treatment with respect to the functional behavior of hsp 70.  相似文献   

10.
Heat shock proteins are chaperones that play a pivotal role in controling multiple regulatory pathways such as stress defense, hormone signaling, cell cycle control, cell proliferation and differentiation, and apoptosis. In this study, the expression patterns of four well-known heat shock genes (hsp70, hsc70-1, hsc70-2 and hsp90α) were characterized in the skin, spleen and blood cells of the common carp, under unstressed conditions and after Cd2+ treatment or hypothermia. The examined genes were expressed in a tissue-specific manner: hsc70-2 was expressed constitutively, and was at best only slightly inducible; hsp90α exhibited a high basic expression in all three tissues, whereas hsc70-1 did so only in the blood cells, the expression of hsp70 proved to be below the level of detection in unstressed fish. Cold shock induced the expression of hsp genes in the spleen (hsp90α) and blood cells (hsp70, hsc70-1 and hsp90α), while Cd2+ treatment has no effect on the expression pattern. The highest inducibilities were detected in the skin: for hsp70 an induction of at least 20-fold after cadmium exposure, for hsc70-1 of at least 30-fold and for hsp90α of 3-fold after hypothermia.  相似文献   

11.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

12.
Heat shock protein 90 (hsp90) is a chaperone required for the proper folding and trafficking of many proteins involved in signal transduction. We tested whether hsp90 plays a role as a chaperone for GC-A, the membrane guanylate cyclase that acts as a receptor for atrial natriuretic peptide (ANP). When cultured cells expressing recombinant GC-A were treated with geldanamycin, an inhibitor of hsp90 function, the ANP-stimulated production of cyclic GMP was inhibited. This suggested that hsp90 was required for GC-A processing and/or stability. A physical association between hsp90 and GC-A was demonstrated in coimmunoprecipitation experiments. Treatment with geldanamycin disrupted this association and led to the accumulation of complexes containing GC-A and heat shock protein 70 (hsp70). Protein folding pathways involving hsp70 and hsp90 include several pathway-specific co-chaperones. Complexes between GC-A and hsp90 contained the co-chaperone p50(cdc37), typically found associated with protein kinase.hsp90 heterocomplexes. GC-A immunoprecipitates did not contain detectable amounts of Hop, FKBP51, FKBP52, PP5, or p23, all co-chaperones found in hsp90 complexes with other signaling proteins. The association of hsp90 and p50(cdc37) with GC-A was dependent on the kinase homology domain of this receptor but not on its ANP-binding, transmembrane, or guanylate cyclase domains. The data suggest that GC-A is regulated by hsp90 complexes similar to those involved in the maturation of protein kinases.  相似文献   

13.
14.
Changes in protein synthesis induced by heat shock of Strongylocentrotus purpuratus gastrulae were analyzed bt two-dimensional electrophoresis. Hyperthermia induces the synthesis of polypeptides having molecular masses of 90, 70, 50, 40, and 38 kDa. One of these, hsp90, appears as a pair of polypeptides which comigrates with proteins synthesized at normal temperature in eggs and embryos; these comigrating spots produce indistinguishable patterns upon electrophoretic analysis of partial V8 protease digests, indicating that hsp90 is synthesized throughout embryogenesis. The relative rate of incorporation of methionine into hsp90 is low in eggs and zygotes, but increases abruptly in morulae, constituting a rare and striking change in protein synthesis during early development. Cell-free translation analyses indicate that most of the mRNA encoding hsp90 resides in the pool of free ribonucleoprotein particles in eggs and early embryos, but shifts to polysomes by the 64-cell stage while remaining constant in mass. Thus the increase in synthesis of hsp90 appears to be via the selective activation of translation of a stored maternal mRNA. The shift of hsp90 mRNA to polysomes is accompanied by polyadenylation. Heat shock of eggs or zygotes did not result in translational activation of hsp90 mRNA. The sea urchin hsp90 doublet of spots comigrates with hsp90 induced by heat shock of chicken embryo fibroblasts, a conserved protein abundant in many cells of a variety of species.  相似文献   

15.
16.
We have reported earlier that a heat shock element in the first intron of human hsp90β gene (iHSE) acts as an intronic enhancer to bind the heat shock factor (HSF1) and activates hsp90β gene under heat shock. Here, we show that, in addition to the HSF1, Stat1 phosphorylation is indispensable in the event. We show that Jak2, a Janus kinase specifically associated with the β subunit of IFNγ receptor, and PKCε? an isoform of the atypical PKC family, are the two dominant kinases responsible for the heat shock induced phosphorylation on Y701 and S727 of Stat1. However, the activation of these kinases under heat shock requires the association of chaperone proteins of the Hsp90 family, in particular, the Hsp90β under heat shock. Furthermore, Brg1, an ATPase subunit of the SWI/SNF chromatin remodeling complex is likely recruited by HSF1 and Stat1 at the iHSE under heat shock. Brg1 further confers an open chromatin conformation at the promoter region that is pivotal to the heat shock induced fully activation of the hsp90β gene in Jurkat cells. This is a novel example of how multiple activation steps occur under heat shock, first on the kinases and then the Stat1 and the SWI/SNF chromatin remodeling complex that follows to conduct an auto-regulation based fully activation of the gene.  相似文献   

17.
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.  相似文献   

18.
Heat shock protein (HSP)105 is a testis-specific and HSP90-related protein. The aim of this study was to explore the functions of HSP105 in the rat testis. Signals of HSP105 were detected immunohistochemically in the germ cells and translocated from the cytoplasm to the nucleus at 2 days after experimental induction of cryptorchidism. In cultured testicular germ cells, a significant increase in the expression of HSP105 in response to heat stress (37 degrees C) was detected in the insoluble protein fractions. Several binding proteins were isolated from rat testis using a HSP105 antibody immunoaffinity column, and p53, the tumor suppressor gene product, was copurified with these. Furthermore, immunoprecipitation using antibodies to p53 led to coprecipitation of HSP105 together with p53 after culturing germ cells at 32.5 degrees C, but not at 37 or 42 degrees C. In conclusion, HSP105 is specifically localized in the germ cells and may translocate into the nucleus after heat shock. HSP105 is suggested to form a complex with p53 at the scrotal temperature, and dissociate from it at suprascrotal temperatures. At scrotal temperature, HSP105 may thus contribute to the stabilization of p53 proteins in the cytoplasm of the germ cells, preventing the potential induction of apoptosis by p53.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号