共查询到20条相似文献,搜索用时 15 毫秒
1.
LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation 总被引:14,自引:0,他引:14
Gur G Rubin C Katz M Amit I Citri A Nilsson J Amariglio N Henriksson R Rechavi G Hedman H Wides R Yarden Y 《The EMBO journal》2004,23(16):3270-3281
2.
Ewan LC Jopling HM Jia H Mittar S Bagherzadeh A Howell GJ Walker JH Zachary IC Ponnambalam S 《Traffic (Copenhagen, Denmark)》2006,7(9):1270-1282
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system. 相似文献
3.
Katz M Shtiegman K Tal-Or P Yakir L Mosesson Y Harari D Machluf Y Asao H Jovin T Sugamura K Yarden Y 《Traffic (Copenhagen, Denmark)》2002,3(10):740-751
Ligand-dependent endocytosis of the epidermal growth factor receptor (EGFR) involves recruitment of a ubiquitin ligase, and sorting of ubiquitylated receptors to lysosomal degradation. By studying Hgs, a mammalian homolog of a yeast vacuolar-sorting adaptor, we provide information on the less understood, ligand-independent pathway of receptor endocytosis and degradation. Constitutive endocytosis involves receptor ubiquitylation and translocation to Hgs-containing endosomes. Whereas the lipid-binding motif of Hgs is necessary for receptor endocytosis, the ubiquitin-interacting motif negatively regulates receptor degradation. We demonstrate that the ubiquitin-interacting motif is endowed with two functions: it binds ubiquitylated proteins and it targets self-ubiquitylation by recruiting Nedd4, an ubiquitin ligase previously implicated in endocytosis. Based upon the dual function of the ubiquitin-interacting motif and its wide occurrence in endocytic adaptors, we propose a ubiquitin-interacting motif network that relays ubiquitylated membrane receptors to lysosomal degradation through successive budding events. 相似文献
4.
Morris F. White 《Journal of bioenergetics and biomembranes》1991,23(1):63-82
Over the past ten years, several growth factor receptors have been shown to be ligand-regulated tyrosine kinases. Tyrosine kinase activity is essential for signal transmission, suggesting that phosphorylation cascades may play an important role. Considerable effort has gone into understanding the structure and function of tyrosine kinase receptors in order to define their mechanisms of signal transmission. However, the protein substrates of the receptor kinases have proven to be difficult to isolate and clone. This review focuses on the receptors for insulin, epidermal growth factor, and platelet-derived growth factor. They are all tyrosine kinases, but emerging evidence suggests that they utilize multiple separate signal transduction pathways. Work carried out during the next several years should yield considerable insight into the complexity of the components which interact with these tyrosine kinase receptors to regulate cellular growth and metabolism. 相似文献
5.
6.
The trafficking of receptor tyrosine kinases (RTKs) to distinct subcellular locations is essential for the specificity and fidelity of signal transduction and biological responses. This is particularly important in the PNS and CNS in which RTKs mediate key events in the development and maintenance of neurons and glia through a wide range of neural processes, including survival, proliferation, differentiation, neurite outgrowth, and synaptogenesis. The mechanisms that regulate the targeting of RTKs to their subcellular destinations for appropriate signal transduction, however, are still elusive. In this review, we discuss evidence for the spatial organization of signaling machinery into distinct subcellular compartments, as well as the role for ligand specificity, receptor sorting signals, and lipid raft microdomains in RTK targeting and the resultant cellular responses in neural cells. 相似文献
7.
Shao Y Akmentin W Toledo-Aral JJ Rosenbaum J Valdez G Cabot JB Hilbush BS Halegoua S 《The Journal of cell biology》2002,157(4):679-691
A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential. 相似文献
8.
Rosario Ammendola Maria Rosaria Ruocchio Giuseppa Chirico Lucia Russo Carmela De Felice Franca Esposito Tommaso Russo Filiberto Cimino 《Archives of biochemistry and biophysics》2002,397(2):253-257
Reactive oxygen species have been implicated as possible second messengers in mitogenic signal transduction. We demonstrate that in normal fibroblasts the treatment with the two inhibitors of phagocytic NADH/NADPH oxidase prevents tyrosine phosphorylation of platelet-derived growth factor receptor upon the exposure of serum-deprived cells to growth factors. Furthermore, the inhibition of NADH/NADPH oxidase abolishes ERKs activation and p21(waf1) accumulation that occurs when cells are exposed to growth factors. Finally, NADH/NADPH inhibitors prevent the p66(Shc) Ser-phosphorylation induced by serum and by phorbol 12-myristate-13-acetate, which suggests that the direct target(s) of reactive oxygen species is(are) located upstream from the machinery connecting growth factor receptors to Ras. 相似文献
9.
Peter van Kerkhof Marijn Westgeest Gerco Hassink Ger J. Strous 《Experimental cell research》2011,(7):1071
The ubiquitin ligase SCFTrCP is required for internalisation of the growth hormone receptor (GHR) and acts via a direct interaction with the ubiquitin-dependent endocytosis motif. Details of how the ligase communicates its information to the clathrin-mediated internalisation machinery are unknown. For the EGF receptor, c-Cbl acts both at the cell surface and in endosomes. We hypothesised that SCFTrCP is required for GHR degradation at both sites. This was tested by truncating GHR after a di-leucine-based internalisation motif (GHR349). This receptor enters the cells via the adapter complex AP2. We show that TrCP acts in an early stage of cargo selection: both TrCP silencing and mutation of the ubiquitin-dependent endocytosis motif force the GHR to recycle between endosomes and the plasma membrane, together with the transferrin receptor. Depletion of Tsg101 (ESCRT-I) has the same effect, while silencing of Hrs (ESCRT-0) prevents GH recycling. GH passes through late endosomal vesicles, marked by Lamp1. Coexpressing GHR and EGFR demonstrates that both receptors use the same route to the lysosomes. We show for the first time that SCFTrCP is involved in cargo-specific sorting at endosomes and that Tsg101 rather than Hrs might direct the cargo into the ESCRT machinery. 相似文献
10.
The growth inhibitory effects of exogenously added retinoic acid (RA) on various cultured human glioma cells was observed to be heterogenous, with an ID50 ranging from 10(-7) M to no response. The protein tyrosine kinase activity of epidermal growth factor receptor (EGF-receptor) appeared to parallel the cell's growth responsiveness to RA. Cells sensitive to RA-induced growth inhibition exhibited a dose-dependent decrease in EGF-receptor activity, whereas RA-resistant cells showed no alterations in EGF-receptor protein tyrosine kinase activity or expression. The modulation of EGF-receptor by RA was further examined with RA-sensitive (LG) and -resistant (NG-1) cell lines. Both cell lines were approximately equal in their ability to bind and internalize epidermal growth factor in the presence or absence of RA. Several independent assays suggested that the inhibition of EGF-receptor activity was independent of protein kinase C modulation as mediated by phorbol myristate acetate. However, alterations in associated glycoconjugates of EGF-receptor were observed among the sensitive cells but not the resistant cells. These results suggest RA-induced growth inhibition in sensitive cells may arise, at least in part, through alterations in EGF-receptor and structure. 相似文献
11.
Kento Tanaka Masahiro Kawahara Hiroshi Ueda Teruyuki Nagamune 《Biotechnology progress》2009,25(4):1138-1145
Although receptor tyrosine kinases (RTKs) play a pivotal role in the development and maintaining the homeostasis of the body, overexpression or mutation of RTKs often induces tumorigenesis or metastasis. To mimic the function of RTKs, we developed two fusion receptors consisting of anti‐fluorescein antibody single‐chain Fv, extracellular D2 domain of erythropoietin receptor and transmembrane/intracellular domains of epidermal growth factor receptor or c‐fms based on previously constructed antibody/cytokine receptor chimeras. The expression of these chimeric receptors in the hematopoietic cell line Ba/F3 and non‐hematopoietic cell line NIH/3T3 resulted in the activation of receptors themselves, downstream signaling molecules and cell proliferation in response to fluorescein‐conjugated BSA, leading to selective expansion of transduced cells up to almost 100%. These results indicate that the cognate antigen could activate the chimeric receptors even though the wild‐type extracellular domains were switched to the antibody fragment. This is the first study to show that our antigen‐mediated genetically modified cell amplification (AMEGA) system could be applied to non‐hematopoietic cells by utilizing antibody/RTK chimeras. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
12.
Morino C Kato M Yamamoto A Mizuno E Hayakawa A Komada M Kitamura N 《Experimental cell research》2004,297(2):380-391
Ligand-stimulated growth factor receptors are rapidly internalized and transported to early endosomes. Unstimulated receptors are also internalized constitutively, although at a slower rate, and delivered to the same organelle. At early endosomes, stimulated receptors are sorted for the lysosomal degradation pathway, whereas unstimulated receptors are mostly recycled back to the cell surface. To investigate the role of Hrs, an early endosomal protein, in this sorting process, we overexpressed Hrs in HeLa cells and examined the intracellular trafficking of epidermal growth factor receptor (EGFR) in EGF-stimulated and unstimulated cells. Overexpression of Hrs inhibited the trafficking of EGFR from early endosomes, resulting in an accumulation of EGFR on early endosomes in both ligand-stimulated and unstimulated cells. On the other hand, overexpression of Hrs mutants with a deletion or a point mutation within the FYVE domain did not inhibit the trafficking. These results suggest that Hrs regulates the sorting of ligand-stimulated and unstimulated growth factor receptors on early endosomes, and that the FYVE domain, which is required for Hrs to reside in a microdomain of early endosomes, plays an essential role in the function of Hrs. 相似文献
13.
《Journal of receptor and signal transduction research》2013,33(2):61-71
Although bradykinin (BK) and insulin like growth factor-1 (IGF-1) have been shown to modulate the functional and structural integrity of the arterial wall, the cellular mechanisms through which this regulation occurs is still undefined. The present study examined the role of second messenger molecules generated by BK and IGF-1 that could ultimately result in proliferative or antiproliferative signals in vascular smooth muscle cells (VSMC).Activation of BK or IGF-1 receptors stimulated the synthesis and release of prostacyclin (PGI2) leading to increased production of cAMP in VSMC. Inhibition of p42/p44mapk or src kinases prevented the increase in PGI2 and cAMP observed in response to BK or IGF-1, indicating a role for these kinases in the regulation of cPLA2 activity in the VSMC. Inhibition of PKC failed to alter production of PGI2 in response to BK, but further increased both p42/p44mapk activation and the synthesis of PGI2 produced in response to IGF-1. In addition, both BK and IGF-1 significantly induced the expression of c-fos mRNA levels in VSMC, and this effect of BK was accentuated in the presence a cPLA2 inhibitor. Finally, inhibition of cPLA2 activity and/or cyclooxygenase activity enhanced the expression of collagen I mRNA levels in response to BK and IGF-1 stimulation.These findings indicate that the effect of BK or IGF-1 to stimulate VSMC growth is an integrated response to the activation of multiple signaling pathways. Thus, the excessive cell growth that occurs in certain forms of vascular disease could reflect dysfunction in one or more of these pathways. 相似文献
14.
Jun-Hyeog Jang Fen Wang Mikio Kan 《In vitro cellular & developmental biology. Animal》1997,33(10):819-824
Summary Fibroblast growth factor-7 (FGF-7) and a specific splice variant of the FGF tyrosine kinase receptor family (FGFR2IIIb) constitute
a paracrine signaling system from stroma to epithelium. Different effects of the manipulation of cellular heparan sulfates
and heparin on activities of FGF-7 relative to FGF-1 in epithelial cells suggest that pericellular heparan sulfates may regulate
the activity of FGF-7 by a different mechanism than other FGFs. In this report, we employ the heparan sulfate-binding protein,
protamine sulfate, to reversibly block cellular heparan sulfates. Protamine sulfate, which does not bind significantly to
FGF-7 or FGFR2IIIb, inhibited FGF-7 activities, but not those of epidermal growth factor. The inhibition was overcome by increasing
the concentrations of FGF-7 or heparin. Heparin was essential for binding of FGF-7 to recombinant FGFR2IIIb expressed in insect
cells or FGFR2IIIb purified away from cell products. These results suggest that, similar to other FGF polypeptides, heparan
sulfate within the pericellular matrix is required for activity of FGF-7. Differences in response to heparin and alterations
in the BULK heparan sulfate content of cells likely reflect FGF-specific differences in the cellular repertoire of multivalent
heparan sulfate chains required for assembly and activation of the FGF signal transduction complex. 相似文献
15.
Gina?A. Smith Gareth?W. Fearnley Darren?C. Tomlinson Michael?A. Harrison Sreenivasan Ponnambalam 《Bioscience reports》2015,35(5)
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. 相似文献
16.
Myromslien FD Grøvdal LM Raiborg C Stenmark H Madshus IH Stang E 《Experimental cell research》2006,312(16):3036-3048
Sorting of endocytosed EGF receptor (EGFR) to internal vesicles of multivesicular bodies (MVBs) depends on sustained activation and ubiquitination of the EGFR. Ubiquitination of EGFR is mediated by the ubiquitin ligase Cbl, being recruited to the EGFR both directly and indirectly through association with Grb2. Endosomal sorting of ubiquitinated proteins further depends on interaction with ubiquitin binding adaptors like Hrs. Hrs localizes to flat, clathrin-coated domains on the limiting membrane of endosomes. In the present study, we have investigated the localization of EGFR, Cbl and Grb2 with respect to coated and non-coated domains of the endosomal membrane and to vesicles within MVBs. Both EGFR, Grb2, and Cbl were concentrated in coated domains of the limiting membrane before translocation to inner vesicles of MVBs. While almost all Hrs was in clathrin-positive coats, EGFR and Grb2 in coated domains only partially colocalized with Hrs and clathrin. The extent of colocalization of EGFR and Grb2 with Hrs and clathrin varied with time of incubation with EGF. These results demonstrate that both clathrin-positive and clathrin-negative electron dense coats exist on endosomes and are involved in endosomal sorting of the EGFR. 相似文献
17.
Benter IF Juggi JS Khan I Yousif MH Canatan H Akhtar S 《Molecular and cellular biochemistry》2005,268(1-2):175-183
It is well established that brief episodes of ischemia/reperfusion (I/R) [preconditioning (PC)] protect the myocardium from the damage induced by subsequent more prolonged I/R. However, the signaling pathways activated during PC or I/R are not well characterized. In this study, the role of Ras-GTPase, tyrosine kinases (TKs), epidermal growth factor receptor (EGFR) and Ca2 +/calmodulin-dependent protein kinase II (CaMK II) in mediating PC in a perfused rat heart model was investigated. A 40-min episode of global ischemia in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP), and impaired coronary hemodynamics, measured as coronary flow (CF) and coronary vascular resistance (CVR). PC significantly enhanced cardiac recovery after I/R. Combination of PC and FPT III (Ras-GTPase inhibitor FPT III; 232 ng/min for 6 days) treatment did not produce any additive benefits as compared to PC alone. In contrast, PC-induced improvements in cardiac function after I/R were significantly attenuated by pretreatment with genistein (1mg/kg/day for 6 days), a broad-spectrum inhibitor of TKs, or AG1478 (1mg/kg/day for 6 days), a specific inhibitor of EGFR tyrosine kinase or KN-93 (578 ng/min for 6 days), a CaMK II inhibitor, before PC. These observations suggest that PC and FPT III pretreatment may produce cardioprotection via similar mechanisms. Present results also indicate that activation of TKs and specifically activation of EGFR-mediated TKs and CaMK II-mediated regulation of calcium homeostasis are part of the PC mechanisms that improve recovery after I/R. (Mol Cell Biochem 268: 175–183, 2005) 相似文献
18.
Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth 总被引:1,自引:0,他引:1
Hao Wang Yu C. Tse Angus H.Y. Law Samuel S.M. Sun Yong‐Bin Sun Zeng‐Fu Xu Stefan Hillmer David G. Robinson Liwen Jiang 《The Plant journal : for cell and molecular biology》2010,61(5):826-838
Vacuolar sorting receptors (VSRs) are type‐I integral membrane proteins that mediate biosynthetic protein traffic in the secretory pathway to the vacuole, whereas secretory carrier membrane proteins (SCAMPs) are type‐IV membrane proteins localizing to the plasma membrane and early endosome (EE) or trans‐Golgi network (TGN) in the plant endocytic pathway. As pollen tube growth is an extremely polarized and highly dynamic process, with intense anterograde and retrograde membrane trafficking, we have studied the dynamics and functional roles of VSR and SCAMP in pollen tube growth using lily (Lilium longiflorum) pollen as a model. Using newly cloned lily VSR and SCAMP cDNA (termed LIVSR and LISCAMP, respectively), as well as specific antibodies against VSR and SCAMP1 as tools, we have demonstrated that in growing lily pollen tubes: (i) transiently expressed GFP‐VSR/GFP‐LIVSR is located throughout the pollen tubes, excepting the apical clear‐zone region, whereas GFP‐LISCAMP is mainly concentrated in the tip region; (ii) VSRs are localized to the multivesicular body (MVB) and vacuole, whereas SCAMPs are localized to apical endocytic vesicles, TGN and vacuole; and (iii) microinjection of VSR or SCAMP antibodies and LlVSR small interfering RNAs (siRNAs) significantly reduced the growth rate of the lily pollen tubes. Taken together, both VSR and SCAMP are required for pollen tube growth, probably working together in regulating protein trafficking in the secretory and endocytic pathways, which need to be coordinated in order to support pollen tube elongation. 相似文献
19.
Inducers of oxidative stress block ciliary neurotrophic factor activation of Jak/STAT signaling in neurons 总被引:10,自引:0,他引:10
Generation of reactive oxygen species (ROS) with the accumulation of oxidative damage has been implicated in neurodegenerative disease and in the degradation of nervous system function with age. Here we report that ROS inhibit the activity of ciliary neurotrophic factor (CNTF) in nerve cells. Treatment with hydrogen peroxide (H(2)O(2)) as a generator of ROS inhibited CNTF-mediated Jak/STAT signaling in all cultured nerve cells tested, including chick ciliary ganglion neurons, chick neural retina, HMN-1 motor neuron hybrid cells, and SH-SY5Y and BE(2)-C human neuroblastoma cells. H(2)O(2) treatment of non-neuronal cells, chick skeletal muscle and HepG2 hepatoma cells, did not inhibit Jak/STAT signaling. The H(2)O(2) block of CNTF activity was seen at concentrations as low as 0.1 mm and within 15 min, and was reversible upon removal of H(2)O(2) from the medium. Also, two other mediators of oxidative stress, nitric oxide and rotenone, inhibited CNTF signaling. Treatment of neurons with H(2)O(2) and rotenone also inhibited interferon-gamma-mediated activation of Jak/STAT1. Depleting the intracellular stores of reduced glutathione by treatment of BE(2)-C cells with nitrofurantoin inhibited CNTF activity, whereas addition of reduced glutathione protected cells from the effects of H(2)O(2). These results suggest that disruption of neurotrophic factor signaling by mediators of oxidative stress may contribute to the neuronal damage observed in neurodegenerative diseases and significantly affect the utility of CNTF-like factors as therapeutic agents in preventing nerve cell death. 相似文献
20.
The idea of a receptor reserve in mediating cellular function is well known but direct biochemical evidence has not been easy to obtain. This study stems from our results showing that L15 of epidermal growth factor (EGF) is important in both EGF receptor (EGFR) binding and activation, and the L15A analog of human EGF (hEGF) partially uncouples EGFR binding from EGFR activation (Nandagopal et al., [1996] Protein Engng 9:781-788). We address the cellular mechanism of mitogenic signal amplification by EGFR tyrosine kinase in response to L15A hEGF. L15A is partially impaired in receptor dimerization, shown by chemical cross-linking and allosteric activation of EGFR in a substrate phosphorylation assay. Immunoprecipitation experiments reveal, however, that L15A can induce EGFR autophosphorylation in intact murine keratinocytes by utilizing spare receptors, the ratio of total phosphotyrosine content per receptor being significantly lower than that elicited by wild-type. This direct biochemical evidence, based on function, of utilization of a receptor reserve for kinase stimulation suggests that an EGF variant can activate varying receptor numbers to generate the same effective response. L15A-activated receptors can stimulate mitogen-activated protein kinase (MAPK) that is important for mitogenesis. The lack of linear correlation between levels of receptor dimerization, autophosphorylation, and MAPK activation suggests that signal amplification is mediated by cooperative effects. Flow cytometric analyses show that the percentages of cells which proliferate in response to 1 nM L15A and their rate of entry into S-phase are both decreased relative to 1 nM wild-type, indicating that MAPK activation alone is insufficient for maximal stimulation of mitogenesis. Higher concentrations of L15A reverse this effect, indicating that L15A and wild-type differ in the number of receptors each activates to induce the threshold response, which may be attained by cooperative activation of receptor dimers/oligomers by van der Waal's weak forces of attraction. The maintenance of a receptor reserve underscores an effective strategy in cell survival. 相似文献