共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The effect of dopamine (DA) receptor stimulation on the distribution of γ protein kinase C (γPKC) in hippocampal slices was assessed. Nanomolar concentrations of DA decreased cytosolic γPKC (56%) without altering membrane γPKC levels, resulting in decreased total γPKC immunoreactivity. The maximal decrease in cytosolic γPKC occurred at 20 min of incubation and was significantly blocked by the D1 DA antagonist SCH 23390 (10−6 M ) but not by the D2 antagonist sulpiride (10−5 M ). The D1 agonists SKF 38393 and A 77636 mimicked the effect of DA with similar responses produced at 10 µ M and 1 n M , respectively. The D2 agonist quinpirole had no effect on γPKC immunoreactivity, thus indicating that this dopaminergic response is mediated through a D1 -like receptor. DA had no effect on α, δ, or ζPKC isozyme immunoreactivity in the same hippocampal preparations. The DA-induced decrease in cytosolic γPKC immunoreactivity was blocked by the Ca2+ -dependent protease inhibitor N -acetyl-Leu-Leu-norleucinal (100 µ M ) and by the inorganic Ca2+ channel blocker Co2+ . The data suggest that DA stimulates a D1 -like DA receptor, which increases the influx of Ca2+ and activates the Ca2+ -dependent proteolysis of γPKC. 相似文献
2.
Decreased Protein Kinase C Activity During Cerebral Ischemia and After Reperfusion in the Adult Rat 总被引:2,自引:4,他引:2
R. Christian Crumrine George Dubyak Joseph C. LaManna† 《Journal of neurochemistry》1990,55(6):2001-2007
The possible activation of protein kinase C (PKC) during total cerebral ischemia was investigated in the rat. Translocation of PKC activity from the soluble to the particulate fraction was used as an index of PKC activation. There was a drop in the proportion of particulate PKC activity from 30% for controls to 20% by 30 min of ischemia (p less than 0.01). By 20 min of cardiac arrest, there was a 40% decline of the total cellular PKC activity (p less than 0.01). This was not accompanied by an increase in activator-independent activity, a finding indicating PKC was not being converted to protein kinase M. These data suggest that PKC was not activated during ischemia, but rather that ischemia causes a reduction in cellular PKC activity. Translocation of PKC activity to the particulate fraction was not observed in the cerebral cortex or hippocampus of reperfused brain for up to 6 h of recovery following 11-13 min of total cerebral ischemia. The level of total, soluble, and particulate PKC activity in the cerebral cortex was reduced (p less than 0.05), corresponding to the decrease observed by 15 min of ischemia without reflow. A similar decline in activity was also observed in the hippocampus. No increase in activator-independent activity was observed. These data suggest that PKC was inhibited during cerebral ischemia and that this reduced level of PKC activity was maintained throughout 6 h of recovery. We conclude that pathological activation of PKC was not responsible for the evolution of ischemic brain damage. 相似文献
3.
The procedure used to obtain cerebral tissue for analysis of protein kinase C (PKC) activity may affect the subcellular distribution of the enzyme. We compared different methods of tissue preparation and found that the proportion of PKC activity associated with the particulate fraction of the cerebral cortex was only 30% when the brain was frozen in situ while the animal was on life support or after decapitation followed by delayed freezing. Other methods of obtaining cerebral tissue resulted in 49-56% of the PKC activity in the particulate fraction. Freezing per se had no apparent effect on the activity or subcellular distribution of PKC. In addition, whenever the particulate PKC activity was high (greater than 48%), there was also a significant increase in the proportion of particulate protein (from 51 to approximately 63%, p less than 0.05). 相似文献
4.
J. L. Weiner C. F. Valenzuela P. L. Watson †C. J. Frazier †‡T. V. Dunwiddie 《Journal of neurochemistry》1997,68(5):1949-1959
Abstract: The ability of ethanol to enhance GABAA receptor function remains controversial; conflicting observations have been made even in the same brain region, and when using apparently similar methodologies. In this study we characterized a single protocol variable, the initial incubation temperature of brain slices, that had dramatic effects on the ethanol sensitivity of GABAA inhibitory postsynaptic currents (IPSCs) recorded from rat hippocampal CA1 pyramidal neurons. Incubation of hippocampal slices at relatively low temperatures (11–15°C) immediately after slice preparation significantly affected a number of physiological and biochemical parameters. Such slices showed a decrease in extracellular inhibitory postsynaptic potential amplitude, a significant increase in the ethanol sensitivity of GABAA IPSCs in CA1 pyramidal neurons, no change in pentobarbital or flunitrazepam potentiation of IPSCs, and an increase in basal protein kinase C (PKC) activity relative to slices incubated at 31–33°C. In addition, the increase in ethanol sensitivity of GABAA IPSCs was blocked by chelerythrine, a selective inhibitor of PKC. These results suggest that differences in hippocampal slice incubation protocols may have contributed to the disparate results of previous investigations of ethanol modulation of GABAA receptor-mediated synaptic transmission in the rat hippocampus. In addition, these findings provide further evidence that PKC activity positively modulates the interaction between ethanol and GABAA receptors in the mammalian brain. 相似文献
5.
Potassium Chloride Pulse Enhances Mitogen-Activated Protein Kinase Activity in Rat Hippocampal Slices 总被引:2,自引:0,他引:2
Carole Baron Cyril Benes Huynh Van Tan Remi Fagard Marie-Paule Roisin 《Journal of neurochemistry》1996,66(3):1005-1010
Abstract: Mitogen-activated protein (MAP) kinases have been implicated in multiple responses to extracellular stimuli. In this study we show that MAP kinase activity is enhanced after a KCI pulse. This activation correlates with an increased tyrosine phosphorylation of a 42-kDa protein as determined by antiphosphotyrosine immunoblot. The same band is found in an anti-MAP kinase immunoblot. Activity is enhanced within 1 min, reaches a maximum at 2 min, and returns to basal level after 10 min. A second peak of activity is observed between 12 and 30 min. The activation is completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing the involvement of the AMPA type of glutamate receptor. Partial inhibition of MAP kinase activation by 2-amino-5-phosphonovalerate (APV) also shows the involvement of the NMDA receptor. Because the KCI pulse used induces long-term potentiation (LTP) in rat hippocampal slice, we conclude that MAP kinase may be involved in neuronal transduction events leading to LTP. 相似文献
6.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway. 相似文献
7.
Abstract: GABA and the GABAB receptor agonist (−)-baclofen inhibited 4-aminopyridine (4AP)- and KCl-evoked, Ca2+ -dependent glutamate release from rat cerebrocortical synaptosomes. The GABAB receptor antagonist CGP 35348, prevented this inhibition of glutamate release, but phaclofen had no effect. (−)-Baclofen-mediated inhibition of glutamate release was insensitive to 2 µg/ml pertussis toxin. As determined by examining the mechanism of GABAB receptor modulation of glutamate release, (−)-baclofen caused a significant reduction in 4AP-evoked Ca2+ influx into synaptosomes. The agonist did not alter the resting synaptosomal membrane potential or 4AP-mediated depolarization; thus, the inhibition of Ca2+ influx could not be attributed to GABAB receptor activation causing a decrease in synaptosomal excitability. Ionomycin-mediated glutamate release was not affected by (−)-baclofen, indicating that GABAB receptors in this preparation are not coupled directly to the exocytotic machinery. Instead, the data invoke a direct coupling of GABAB receptors to voltage-dependent Ca2+ channels linked to glutamate release. This coupling was subject to regulation by protein kinase C (PKC), because (−)-baclofen-mediated inhibition of 4AP-evoked glutamate release was reversed when PKC was stimulated with phorbol ester. This may therefore represent a mechanism by which inhibitory and facilitatory presynaptic receptor inputs interplay to fine-tune transmitter release. 相似文献
8.
Functional Impairment in Protein Kinase C by RACK1 (Receptor for Activated C Kinase 1) Deficiency in Aged Rat Brain Cortex 总被引:2,自引:0,他引:2
Alessia Pascale Ida Fortino Stefano Govoni †Marco Trabucchi ‡William C. Wetsel † Fiorenzo Battaini 《Journal of neurochemistry》1996,67(6):2471-2477
Abstract: Several laboratories have reported a lack of protein kinase C (PKC) activation in response to various stimuli in the brain of aged rats. It has been suggested that changes in lipid membrane composition could be related to this functional deficit. However, recent evidence has indicated that the translocation of PKC to the different subcellular compartments is controlled by protein-protein interactions. Recently, a class of proteins, termed receptors for activated C kinase (RACKs), have been described that bind PKC. The present study was conducted to determine whether alterations in RACK1, the best-characterized member of RACKs, were associated with changes in translocation and expression of PKC. Quantitative immunoblotting revealed that RACK1 content was decreased by ∼50% in aged rat brain cortex, compared with that in adult and middle-aged animals. The levels of calcium-independent PKCδ and ε, interacting with RACK1, and related calcium-independent PKC activity were not modified by the aging process. By comparison, phorbol ester-stimulated translocation of this activity and of PKCδ and ε immunoreactivity was absent in cortex from aged animals, as well as the translocation of the calcium-dependent PKCβ, also known to interact with RACK1. These results indicate that a deficit in RACK1 may contribute to the functional impairment in PKC activation observed in aged rat brain. 相似文献
9.
J. David Sweatt Coleen M. Atkins Joanne Johnson Joey D. English Erik D. Roberson †Shu-Jen Chen Alexandra Newton ‡Eric Klann 《Journal of neurochemistry》1998,71(3):1075-1085
Abstract: One important aspect of synaptic plasticity is that transient stimulation of neuronal cell surface receptors can lead to long-lasting biochemical and physiological effects in neurons. In long-term potentiation (LTP), generation of autonomously active protein kinase C (PKC) is one biochemical effect persisting beyond the NMDA receptor activation that triggers plasticity. We previously observed that the expression of early LTP is associated with a phosphatase-reversible alteration in PKC immunoreactivity, suggesting that autophosphorylation of PKC might be elevated in LTP. In the present studies we tested the hypothesis that PKC phosphorylation is persistently increased in the early maintenance of LTP. We generated an antiserum that selectively recognizes the α and βII isoforms of PKC autophosphorylated in the C-terminal domain. Using western blotting with this antiserum we observed an NMDA receptor-mediated increase in phosphorylation of PKC 1 h after LTP was induced. How is the increased phosphorylation maintained in the cell in the face of ongoing phosphatase activity? We observed that dephosphorylation of PKC in vitro requires the presence of cofactors normally serving to activate PKC, i.e., Ca2+, phosphatidylserine, and diacylglycerol. Based on these observations and computer modeling of the three-dimensional structure of the PKC catalytic core, we propose a “protected site” model of PKC autophosphorylation, whereby the conformation of PKC regulates accessibility of the phosphates to phosphatase. Although we have proposed the protected site model based on our studies of PKC phosphorylation in LTP, phosphorylation of protected sites might be a general biochemical mechanism for the generation of stable, long-lasting physiologic changes. 相似文献
10.
Protein and Molecular Characterization of Hippocampal Protein Kinase C in C57BL/6 and DBA/2 Mice 总被引:2,自引:1,他引:2
Barbara J. Bowers Steven C. Christensen James R. Pauley Richard Paylor Lisa Yuva Scott E. Dunbar † Jeanne M. Wehner 《Journal of neurochemistry》1995,64(6):2737-2746
Abstract: Measures of protein kinase C (PKC) in C57BL/6 and DBA/2 mice using [3 H]phorbol 12,13-dibutyrate binding to tissue homogenates and brain slices demonstrated that levels of activated, membrane-bound PKC were greater in C57BL hippocampus than in DBA hippocampus. Western analysis of α-, βI -, βII -, γ-, δ-, and ɛ-PKC using isozyme-specific antibodies indicated that the increase observed in C57BL hippocampus was due primarily to the γ-PKC protein, whose immunoreactivity was greater in the membrane-bound fraction in C57BL mice. Characterization of α-, βI,II -, and γ-PKC hippocampal mRNA using northern analysis and isozyme-specific nucleic acid probes did not reveal differences between the strains in levels of gene expression. Restriction fragment length polymorphisms (RFLP) were found in the α- and γ-, but not β-PKC genomic DNA. The RFLPs appeared to be located in noncoding, nonregulatory regions of the gene. These findings suggest that the γ-PKC isozyme is largely responsible for the PKC activity difference in C57BL and DBA hippocampus that has been reported previously and may be closely associated with differences in learning ability observed in these strains. 相似文献
11.
GABAB Receptor-Mediated Inhibition of Histamine H1 -Receptor-Induced Inositol Phosphate Formation in Slices of Rat Cerebral Cortex 总被引:1,自引:2,他引:1
Histamine-stimulated accumulation of [3H]inositol monophosphate ([3H]IP1) in lithium-treated slices of rat cerebral cortex was inhibited by gamma-aminobutyric acid (GABA) (IC50 0.30 +/- 0.03 mM). The maximum level of inhibition was 69 +/- 2%. GABA alone caused a small stimulation of basal accumulation of [3H]IP1. The inhibitory action of GABA on the response to histamine was mimicked by the GABAB agonist (-)-baclofen, IC50 0.69 +/- 0.04 microM, which was 430-fold more potent as an inhibitor than the (+)-isomer. (-)-Baclofen also inhibited histamine-induced formation of [3H]inositol bisphosphate ([3H]IP2) and [3H] inositol trisphosphate ([3H]IP3). Inhibition curves for GABA and for (-)-and and (+)-baclofen had Hill coefficients greater than unity. (-)-Baclofen, at concentrations that caused inhibition of histamine-induced [3H]IP1 accumulation, did not alter the basal level of [3H]IP1 or the incorporation of [3H]inositol into total inositol phospholipids. Isoguvacine, a GABAA agonist, had no effect on either the histamine-stimulated or basal accumulation of [3H]IP1. GABA had no effect on carbachol-stimulated [3H]IP1 formation. 相似文献
12.
The regulatory enzyme protein kinase C (PKC) is proposed to be activated on its translocation from the cytosol to the membrane. However, a portion of the native activity is always associated with the membrane fraction. Using a noninvasive procedure to extract this endogenous activity from rat brain membranes, it has been possible to characterize the activity in a partially purified reconstituted system bearing resemblance to the in vivo system. Two subpopulations of membrane-associated PKC were identified and characterized at the level of activation, inhibition, and isozyme immunologic characteristics and chromatographic properties. One peak had properties similar to those of cytosolic PKC, whereas the second population, extracted as protein-lipid complexes, had considerable constitutive activity that could be stimulated further on addition of PKC activators. This latter activity was relatively resistant to staurosporine inhibition and phorbol ester treatment, but it phosphorylated the exogenous PKC substrates, histone 1 and the epidermal growth factor receptor peptide KTRLRR. The constitutive activity was totally dependent on its endogenous associated lipids coextracted by the solubilization procedure. The ratio between these two populations was ontogenetically regulated and modulated by phorbol ester treatment, suggesting that different PKC populations may serve unique functions in the rat brain regulated by the lipid environment. Analyses of the phospholipids extracted in these protein-lipid complexes showed differences in the major classes correlating to age. However, apart from a markedly lower cholesterol content in these complexes, no direct relationship between a specific lipid composition and the amount of constitutive PKC activity was evident. 相似文献
13.
Xiu-fang Chen Hong-hua Miao Jian-wei Zhang Yifan Han † Yu-cang Du 《Journal of neurochemistry》1996,66(5):2067-2073
Abstract: A new family of membrane phosphoproteins designated as P9, P12, P15, P16, and P20 with corresponding apparent molecular weights of 9K, 12K, 15K, 16K, and 20K was characterized from rat brain by using in vitro exogenous or endogenous phosphorylation and autoradiography. As the phosphorylation was selectively inhibited by the protein kinase C (PKC) inhibitor PKC19–31 or Ca2+ -chelating reagents and again stimulated by the PKC activator phorbol 12,13-dibutyrate, these proteins are thought to be the natural PKC substrates. Because P12, P15, P16, and P20 were neutral proteins (pl 7.0) and specifically distributed in neuronal membranes, the new family of membrane-associated PKC substrate proteins was referred to as neutrinins. Neutrinins were widely distributed in rat brain, being especially plentiful in the spinal cord, medulla oblongata, cerebellum, and midbrain, relatively scanty in the cerebral cortex, but lacking in cytosol of brain areas and cell membrane preparations of peripheral tissues. The expression of the developmental changes of neutrinins has been monitored by the in vitro exogenous phosphorylation approach, i.e., adding purified PKC to a deactivated synaptosomal plasma membrane system. Levels of all the neutrinin proteins in rat cerebral cortex, as represented by P12, P15, and P16, showed an ontogenetic increase from the early postnatal days to the adult. This appears to be correlated with the commencement of synaptogenesis. 相似文献
14.
Prenatal Ethanol Exposure Decreases GAP-43 Phosphorylation and Protein Kinase C Activity in the Hippocampus of Adult Rat Offspring 总被引:3,自引:0,他引:3
Nora I. Perrone-Bizzozero Tove V. Isaacson Gregory M. O. Keidan Cheryl Eriqat Karina F. Meiri Daniel D. Savage Andrea M. Allan 《Journal of neurochemistry》1998,71(5):2104-2111
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32 P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation. 相似文献
15.
These experiments examined the mechanism by which phenylephrine enhances beta-adrenoceptor-stimulated cyclic AMP formation in rat hypothalamic and preoptic area slices. To this end we manipulated phospholipase C. phospholipase A2, and protein kinase C activity in slices and assessed the effects of these manipulations on phenylephrine augmentation of isoproterenol-stimulated cyclic AMP generation. Since previous work indicated that estrogen enhances the alpha 1-component of cyclic AMP formation, we examined slices from both gonadectomized and estrogen-treated animals. The alpha 1-antagonist prazosin eliminated phenylephrine augmentation of the beta-response, suggesting that alpha 1-adrenergic receptors mediate the potentiation of cyclic AMP formation. Inhibition of protein kinase C by H7 attenuated the alpha 1-augmentation of beta-stimulated cyclic AMP formation. Staurosporine, a more potent protein kinase C inhibitor, completely abolished the alpha 1-augmenting response. In addition, phenylephrine potentiation of the isoproterenol response was not observed if protein kinase C was first stimulated directly with a synthetic diacylglycerol (1-oleoyl-2-acetyl-sn-glycerol) or phorbol ester (phorbol 12,13-dibutyrate). Neomycin, an inhibitor of phospholipase C, decreased alpha 1-receptor enhancement of beta-stimulated cyclic AMP formation, whereas quinacrine, an inhibitor of phospholipase A2, did not. The data suggest that the postreceptor mechanism involved in alpha 1-adrenergic receptor potentiation of cyclic AMP generation in hypothalamic and preoptic area slices includes activation of phospholipase C and protein kinase C. 相似文献
16.
Reduced Protein Kinase C Activity in Ischemic Spinal Cord 总被引:1,自引:4,他引:1
Protein phosphorylation was evaluated in a rabbit spinal cord ischemia model under conditions where cyclic AMP-dependent protein kinase (PK-A) and calcium/phospholipid-dependent protein kinase (PK-C) were activated. One hour of ischemia did not affect PK-A activity significantly; however, PK-C activity was reduced by more than 60%. In vitro phosphorylation of endogenous proteins by endogenous PK-C revealed that eight particulate and five cytosolic proteins showed stimulated phosphorylation by PK-C activators in control tissue, although this stimulation was virtually absent in ischemic samples. When control and ischemic particulate fractions were combined, the endogenous protein phosphorylation pattern under PK-C-activating conditions was similar to the ischemic sample, which suggests that inhibitory molecules may be present in the ischemic particulate fraction. In vitro phosphorylation of endogenous proteins under PK-A-activating conditions in ischemic tissue was similar to that in control tissue. The results suggest that the PK-C phosphorylation system is selectively impaired in ischemic spinal cord. In addition to reduced PK-C-dependent phosphorylation, an Mr 64,000 protein was phosphorylated in ischemic cytosolic samples, but not in control samples. The phosphorylation of the Mr 64,000 protein was neither PK-C-dependent nor PK-A-dependent. These altered phosphorylation reactions may play critical roles in neuronal death during the course of ischemia. 相似文献
17.
Abstract: The effects of D1 and D2 dopamine ligands on protein kinase C (PKC) activity were examined in synaptoneurosomes. Incubation with D1 agonists (SKF 38393, fenodopam), in the presence of calcium, decreased the soluble and increased the particulate PKC activity. These effects were reversed by SCH 23390, which by itself had the opposite effect of increasing the soluble and decreasing the particulate PKC activity. In contrast, incubation with the D2 agonists [LY 171555, (+)-3-(3-hydroxyphenyl)- N - n -propylpiperidine, RU 24213] increased the soluble and decreased the particulate PKC activity. These effects were reversed by sulpiride. (−)-3-(3-Hydroxyphenyl)- N - n -propylpiperidine had a D2 antagonist profile. Apomorphine showed a biphasic dose-response change; i.e., it decreased particulate PKC activity at the D2 receptor at low concentrations (0.1 µ M ) and increased it at the D1 receptor at higher concentrations (10 µ M ). Pretreatment with tetrodotoxin or omission of calcium in the incubation medium did not alter the responses of the D2 agonists, but it reversed the changes in PKC activity induced by the D1 agonists and converted the biphasic response of apomorphine to a monophasic inhibition. These results indicate that (1) D1 and D2 dopamine receptors are negatively coupled to PKC and (2) the increase in particulate PKC activity seen with the D1 drugs in the presence of calcium is mediated indirectly via a transneuronal effect. 相似文献
18.
Biljana Pavlovi-urjanev Anne L. Cahill Robert L. Perlman 《Journal of neurochemistry》1993,61(2):697-703
Abstract: Bovine chromaffin cells contain a family of renaturable protein kinases. One of these, a 60,000 Mr kinase (PK60) that phosphorylated myelin basic protein in vitro, was activated fourfold when cells were treated with the protein kinase inhibitor Staurosporine. Because staurosporine inhibits protein kinase C, the role of this kinase in the regulation of PK60 activity was investigated. Fifty nanomolar Staurosporine produced half-maximal inhibition of protein kinase C activity in chromaffin cells, whereas ∼225 n M Staurosporine was required to induce half-maximal activation of PK60. Other protein kinase C inhibitors, H-7 and K-252a, did not mimic the effect of Staurosporine on PK60 activity. Chromaffin cells have three protein kinase C isoforms: α, ε, and ζ. Prolonged treatment with phorbol esters depleted the cells of protein kinase C α and ε, but not ζ. Neither activation nor depletion of protein kinase C affected the basal activity of PK60. Moreover, Staurosporine activated PK60 in cells depleted of protein kinase C α and e; thus, Staurosporine appeared to activate PK60 by a mechanism that does not require these protein kinase C isoforms. Incubation of cell extracts with Staurosporine in vitro did not activate PK60. Incubation of these extracts with adenosine 5'-O-(3-thiotriphosphate), however, caused a twofold activation of PK60. Although this suggests that PK60 activity is regulated by phosphorylation, the mechanism by which Staurosporine activates PK60 is not known. Staurosporine has been reported to promote neurite outgrowth from chromaffin cells. The role of PK60 in mediating the effects of Staurosporine on chromaffin cell function remains to be determined. 相似文献
19.
Evidence for a Single Protein Kinase C-Mediated Phosphorylation Site in Rat Brain Protein B-50 总被引:4,自引:7,他引:4
The neuronal protein B-50 may be involved in diverse functions including neural development, axonal regeneration, neural plasticity, and synaptic transmission. The rat B-50 sequence contains 226 amino acids which include 14 Ser and 14 Thr residues, all putative sites for phosphorylation by calcium/phospholipid-dependent protein kinase C (PKC). Phosphorylation of the protein appears to be a major factor in its biochemical and possibly its physiological activity. Therefore, we investigated rat B-50 phosphorylation and identified a single phosphorylated site at Ser41. Phosphoamino acid analysis eliminated the 14 Thr residues because only [32P]Ser was detected in an acid hydrolysate of [32P]B-50. Staphylococcus aureus protease peptide mapping produced a variety of radiolabelled [32P]B-50 products, none of which had the same molecular weights or HPLC retention times as several previously characterized fragments. Indirect confirmation of the results was provided by differential phosphorylation of major and minor forms of B-60 that have their N-termini at, or C-terminal to, the Ser41 residue and are the major products of specific B-50 proteolysis. Only those forms of B-60 that contained the Ser41 residue incorporated phosphate label. The results are discussed with reference to the substrate requirements for B-50 phosphorylation by PKC and the proposed structure of the B-50 calmodulin binding domain. 相似文献
20.
Shu-Jen Chen Manisha A. Desai Eric Klann Danny G. Winder J. David Sweatt P. Jeffrey Conn 《Journal of neurochemistry》1992,59(5):1761-1769
Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect. 相似文献