首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
Calcium content and distribution of the 25-day pregnant (PR) and post partum (PP) rabbit uterus was studied by atomic absorption spectrophotometry and 45Ca determination. Total Ca content [2.28 +/- 0.28 (PR) and 2.19 +/- 0.12 (PP) mM/kg wet wt] extracellular [1.21 +/- 0.09 (PR) and 1.25 +/- 0.11 (PP) mM/kg wet wt] cellular [1.07 +/- 0.08 (PR) and 0.94 +/- 0.09 (PP) mM/kg wet et], total exchangeable [1.86 +/- 0.11 (PR) and 1.84 +/- 0.09 (PR) mM/kg wet wt] and inexchangeable [0.43 +/- 0.05 (PR) and 0.35 +/- 0.04 (PP) mM/kg wet wt] Ca fractions were identical in the two extreme endocrinological conditions. In contrast compartment size and rate constant of different exchangeable Ca fractions determined by kinetic analysis of 45Ca desaturation "urves (curve-peeling tecnique and computer method), revealed significant differences between PR and PP uteri. Two exchangeable phases could be identified in both endocrinological states. The rate constants of both phases of efflux were significantly higher in the PP (alpha 1 = 0.173 +/- 0.02 min-1; alpha 2 = 0.023 +/- 0.001 min-1) than in the PR uterus (alpha 1 = 0.099 +/- 0.01 min-1; alpha 2 = 0.018 +/- 0.01 min-1). Compartment size of phase 1 (fast component) was significantly higher in the PR (1.13 +/- 0.1 mM/kg wet wt) than in the PP uterus (0.77 +/- 0.06 mM/kg wet wt). In contrast, compartment size of phase 2 (slow component) was significantly smaller in PR than in PP uterine strips (0.74 +/- 0.06 and 1.08 +/- 0.11 mM/kg wet wt). The last portion of desaturation curves represents efflux from one homogenous compartment. The present results suggest that endocrinological control of the rabbit myometrium is linked to the regulation of the binding of a superficial exchangeable Ca fraction.  相似文献   

2.
Under the condition of rapid perfusion, the time course of contractile response of single ventricular cells to extracellular calcium (Ca) depletion and repletion identifies "fast" and "slow" cellular Ca pools. 45Ca exchange was studied in these cells under the same conditions of on-line rapid perfusion. Four kinetically-defined compartments were distinguished: (1) A "rapid" compartment containing 2.6 mmoles Ca/kg dry wt of lanthanum (La) displaceable Ca, t1/2 less than 1 sec.; (2) An "intermediate" compartment(s) containing 2.1 mmoles, t1/2 = 3 and 19 sec. Caffeine displaced significant amounts of Ca from this compartment whereas La displaced none; (3) A "slow" compartment containing 1.6 mmoles, t1/2 = 3.6 min. Addition of inorganic phosphate to the perfusate adds significant amounts of Ca to this compartment; (4) An "inexchangeable" compartment, containing 1.2 mmoles. The "rapid" compartment's flux is greater than or equal to 300 mumoles Ca/kg wet wt/sec. Its exchange rate indicates that it is the kinetic counterpart of the functionally-defined "fast" pool. Its subcellular locus is undefined. The "intermediate" compartment is best correlated with the "slow" pool and represents Ca in the sarcoplasmic reticulum. The "slow" compartment contains a significant fraction from the mitochondria. The results indicate that greater than or equal to 40% of cellular Ca can turn over within the period of one contraction cycle. These results are consistent with the following sequence: (1) Upon sarcolemmal depolarization, Ca moves through the Ca channel to arrive at the SR and at the myofilaments. (2) Ca induced Ca release occurs via the "feet" at the SR-inner SL region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The aim of the present study was to examine the effect of angiotensin II on the different pools of exchangeable Ca2+ in isolated rat adrenal glomerulosa cells. On the basis of steady state analysis of 45Ca exchange curves at least three kinetically distinct Ca2+ compartments are present in these cells. The most rapidly exchangeable compartment was regarded as Ca2+ loosely bound to the glycocalyx and the other compartments were considered to be intracellular Ca2+ pools. The effect of angiotensin II on different intracellular compartments was examined by adding the hormone at different phases of Ca2+ washout. Angiotensin increased the rate of 45Ca efflux within 1.5 min when added at the beginning of the washout. This effect, however, could not be detected when the hormone was added at the 30th min of washout, indicating that at least one hormone sensitive pool had lost most of its radioactivity by this time. In contrast to angiotensin II, the mitochondrial uncoupler FCCP mobilized almost the same quantity of 45Ca irrespective of the time of its addition during the washout. This latter finding suggests that this presumably mitochondrial Ca2+ pool has a slow rate of exchange and thus differs from the pool initially mobilized by angiotensin II. The initial Ca2+ mobilizing effect of angiotensin II was also observed in a Ca2+-free media which contained EGTA, indicating that this effect is not triggered by increased Ca2+ influx. In the present study we demonstrate in the intact glomerulosa cell that angiotensin II mobilizes Ca2+ from an intracellular Ca2+ store which appears to be distinct from the FCCP-sensitive store.  相似文献   

4.
1. The Ca concentration in the toad (Bufo marinus) cornea was 2.6 mmol/kg wet wt compared at 1.0 mmol/l in the bathing aqueous humor and 2.8 mmol/kg wet wt in the separated corneal stromal layer. Cell Ca content was calculated to be about 1.8 mmol/kg wet wt. 2. About 80% of the total Ca appears to be sequestered or bound to tissue components most of which (68% of the total) is associated with the stroma (2.2 mmol/kg wet wt stroma). 3. About 85-90% of the Ca in the stroma is readily exchangeable with external 45Ca. 4. The loss of accumulated 45Ca from the stroma was measured in vitro. This efflux of the isotope was enhanced by multivalent ions and was greatest when Ca2+ or La3+ was present in the external media. Other alkaline earth metal ions were not as effective. The relative effectiveness of this displacement of 45Ca was Ca = La greater than Sr greater than Ba greater than Mg. 5. The results suggest that the Ca2+ is bound by the amphibian stroma at sites that have a preference or specificity for this divalent ion as compared to the other alkaline earth metals. 6. The possible functional role of this bound Ca is discussed.  相似文献   

5.
Calcium shifts accompanying rest and post-rest phenomena in isolated left atrial appendages of guinea-pig heart were investigated by means of isotope 45Ca2+. Experiments were performed under conditions of full equilibration of preparations with isotope-containing solution (at least 45 min) in order to investigate the changes in content of exchangeable Ca, or at short exposure to isotope (2-5 min) in order to measure the excitation-dependent Ca2+ influx. Atria stimulated at the rate of 60/min for 55 min in radioactive solution contained 3.79 +/- 0.21 mM of 45Ca2+/kg of wet weight (w.w.). The rested preparations contained 2.61 +/- 0.23 mM/kg w.w. When the previously stimulated for 45 min atria were allowed to rest for 10 min, their content of 45Ca2+ dropped to 3.01 +/- 0.17 mM/kg w.w. despite continued exposure to this isotope. The first post-rest contraction was by 50% +/- 25% stronger than the control steady-state beats. Contractile force (CF) decreased during the two following beats to 25% of control. Calcium-45 content dropped during these beats to 2.50 +/- 0.14 mM/kg w.w. whereas influx of 45Ca2+ amounted to 0.24 mM/kg w.w. CF recovered to control values during 10 min of the following stimulation. Calcium-45 content reached at this time 4.09 +/- 0.12 mM/kg w.w. It is proposed that there are two intracellular store compartments in guinea-pig atrial muscle. The capacity of one of them is rate-dependent and its Ca2+ is lost at rest. This Ca2+ is partially trapped by the other compartment (presumably sarcoplasmic reticulum) and is released to activate the strong post-rest contraction.  相似文献   

6.
A technique is proposed to evaluate the exponential curve parameters and the initial exchange rate constant (kie) for 22Na+ washout from cultured human skin fibroblasts. After loading with the isotope, the cells were subjected to cold washing and warming steps. A desaturation curve for 22Na+ washout was developed including the activity in the warming medium that corresponded to t = 0 min. Using nonlinear regression analysis, a general three exponential function adequately described the 22Na+ washout in the time interval of 0-70 min. A back extrapolation was performed to estimate the initial time (ti; a negative number) when the total activity was present in the cells. The ti was substituted into the first derivative function of the three exponents to yield the kie. Calculated from the equilibrium distribution of 22Na+ and the specific activity of the medium, the concentration of Na+ (in mM; mean +/- SD) for fibroblasts of two individuals were 13.3 +/- 2.3, n = 3, and 19.0 +/- 5.2, n = 4. This indicates that the washout originated mainly or exclusively from the cellular milieu. Therefore, the kie represents the equilibrium exchange rate constant for Na+ washout from an inhomogeneous cell-related space. Multiple experiments demonstrated that the kie value for the two subjects were significantly higher than the initial slopes of the washout curves (kA), a commonly used parameter to characterize Na+ washout, and significantly lower than the slopes of the fastest exponential components (k3): kie = 0.531 +/- 0.017, kA = 0.502 +/- 0.019, and k3 = 0.557 +/- 0.017 min-1 (n = 3) for one subject, and kie = 0.567 +/- 0.065, kA = 0.479 +/- 0.031, and k3 = 0.667 +/- 0.094 min-1 (n = 6) for the other subject. The respective equilibrium exchange rates for these cells, namely the products of kie and cellular Na+ contents, were 1.10 +/- 0.16 and 1.19 +/- 0.24 nmole/10(5) cells. Using the exponential curve parameters, analytical solutions of a serial model and a parallel model with three compartments were performed. According to these analyses the major portion of the cellular Na+ comprises a fast exchangeable cellular compartment. The relative size of this compartment (expressed as a fraction of total cellular Na+ content) for fibroblasts of the two subjects was 96.2 and 89.2% for the serial model and 96.1 and 89.3% according to the parallel model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Differences of Ca2+ regulation in skin fibroblasts from blacks and whites   总被引:1,自引:0,他引:1  
Black people have a higher propensity than caucasians toward essential hypertension. To explore the possibility that this racial difference relates to cellular Ca2+ metabolism, we measured 45Ca2+ washout and uptake and cytosolic free concentration of Ca2+ [Ca2+]i in serially passed skin fibroblasts from normotensive black and white males. Depending on the experimental conditions, 45Ca2+ washout in these cells was described by either two or three exponential functions, whereas 45Ca2+ uptake was described only by a two-exponent function. There were no racial differences in 45Ca2+ uptake and washout of unstimulated fibroblasts. However, stimulation by human serum resulted in an increase in the 45Ca2+ washout that was higher in fibroblasts from blacks than from whites. The racial differences were expressed primarily by higher values of the apparent washout rate constant (k1) of 45Ca2+ from the largest and most rapidly exchangeable cellular pool. The effect of human serum was not related to its origin (blacks vs. whites). In 2 mM Ca2+ medium and 10% serum from blacks, the respective k1 (mean +/- SEM; x 10(-2)/min) values for fibroblasts from blacks and whites were 89.68 +/- 5.23 and 73.29 +/- 4.0; in the presence of 10% serum from whites, the k1 values for cells from blacks and whites were 84.14 +/- 2.80 and 76.36 +/- 3.23 (overall significance of P less than .01). In Ca2+-deficient medium in the presence of 10% human serum, the k1 for fibroblasts from blacks and whites were 115.57 +/- 3.76 and 102.15 +/- 3.30 (P less than .05). Serum substantially increased the 45Ca2+ uptake in fibroblasts from both blacks and whites; however, racial differences were not observed. Basal levels of [Ca2+]i were not different in fibroblasts of blacks vs. whites (46.8 +/- 6.8 and 43.2 +/- 7.1 nM for blacks and whites, respectively). However, the peak response of Cai2+ transients for cell stimulated by 5% human serum was significantly higher in blacks than whites (blacks = 963 +/- 213, whites = 481 +/- 162 nM; P = .0286). We conclude that Ca2+ regulation is different in serum-stimulated fibroblasts from blacks and whites and that, at least in part, this difference may relate to a greater agonist-induced mobilization of Ca2+ in fibroblasts from blacks.  相似文献   

8.
1. The evaluation of still more pretentious and complicated methods is accompanied by a decline of methodical knowledge outside of the own technical field. Interpretations or extrapolations are taken as granted without critical examination of the methodical steps applied. An example is given by re-evaluating the 45Ca release from isolated cardiac tissue and the possible interpretations. 2. 45Ca release and tissue Ca content were measured in isolated guinea-pig left atria during Ca equilibrium and under conditions known to induce net Ca movements. 3. At equilibrium condition (1.8 mM Na2+0) 3 exponential phase of 45Ca release from the atria were observed. The compartments contained 61%, 29% and 10% of total 45Ca; the t1/2 were 2, 12 and 90 min, respectively. 4. The release of 45Ca from the slowly exchanging compartment (t1/2 90 min) decreased during incubation in nominal Ca-free solution, although a net loss of tissue Ca occurred. Addition of EGTA (5 x 10(-5) M) to the washout medium abolished this retardation of 45Ca release. 5. At external Na+ concentrations below 40 mM (substituted by sucrose), the 45Ca release from the slowly exchanging compartment decreased. Simultaneously, the tissue Ca content increased massively. The 45Ca release was further reduced in Na-poor, nominal Ca-free solution. Under both conditions, the presence of EGTA in the washout medium normalized the rate of 45Ca release. 6. The results suggest that the apparent decline of 45Ca release from intact atria upon reduction of the external Ca and Na concentration does not reflect a decrease of the cellular efflux rate, but is the consequence of an enhanced re-uptake of 45Ca from the extracellular space into the myocardial cells. The probability for the released 45Ca either to escape into the organ bath or to become reabsorbed depends on the specific radioactivity of 45Ca in the extracellular space during the washout phase. Thus, this experimental procedure is not suited to demonstrate a Na-Ca exchange at the cardiac sarcolemma.  相似文献   

9.
The total Ca2+ content of the endoplasmic reticulum and the total Ca2+ and Mg2+ content of mitochondria were determined by electron probe microanalysis of rat liver rapidly frozen in vivo following brief (5-15 s) stimulation with vasopressin or prolonged (10-12 min) stimulation with vasopressin + glucagon. Brief vasopressin injection into the anterior mesenteric vein released 1.8 +/- 0.3 (S.D.) mmol of Ca2+/kg dry weight, from the rough endoplasmic reticulum (p less than 0.01), reducing Ca2+ content of the endoplasmic reticulum from 4.4 +/- 0.2 (S.E.) (controls) to 2.6 +/- 0.2 mmol of Ca2+/kg dry weight. Following vasopressin injection, endoplasmic reticulum Ca2+ was also significantly (p less than 0.025) lower than that in brief sham injected animals (3.5 +/- 0.2 mmol/kg dry weight). Mitochondrial Ca2+ was between 1.0 and 2.3 (+/-0.2) mmol/kg dry weight of mitochondrion, under all conditions studied, and no significant differences were observed. Both hormonal and brief sham injection into the anterior mesenteric vein increased mitochondrial Mg2+ from 42 (+/-0.8) to 49 (+/-1.8) mmol/kg dry weight (p less than 0.05). Hormonal stimulation of Mg2+ uptake was further confirmed by injection of vasopressin + glucagon into the jugular vein (to avoid any stimulation of the liver by the anterior mesenteric vein injection itself); mitochondrial Mg2+ increased from 43 (+/-0.9) (10-min sham) to 57 (+/-1.3) mmol/kg dry weight, with 10-min vasopressin + glucagon injection (p less than 0.01). These results demonstrate that hormones can release Ca2+ from the endoplasmic reticulum and modulate mitochondrial Mg2+ content in vivo without causing detectable changes in mitochondrial Ca2+.  相似文献   

10.
The kinetics of Ca++ uptake have been evaluated in 3T3 and SV40-3T3 mouse cells. The data reveal at least two exchangeable cellular compartments in the 3T3 and SV40-3T3 cell over a 50-min exposure to 45Ca++. A rapidly exchanging compartment may represent surface-membrane-localized Ca++ whereas a more slowly exchanging compartment is presumably intracellular. The transition of the 3T3 cell from exponential growth (at 3 day's incubation) to quiescence (at 7 days) is characterized by a 7.5-fold increase in the size of the fast component. Quiescence of the 3T3 cell is also characterized by a 3.2-fold increase in the unidirectional Ca++ influx into the slowly exchanging compartment and a 3.6-fold increase in its size. The increase in size of the slow compartment at quiescence may result from a redistribution of intracellular Ca++ to a more readily exchangeable compartment, possibly reflecting a release of previously bound Ca++. In contrast, no significant change in any of these parameters is observed in the proliferatively active SV40-3T3 cells after corresponding period of incubation, even though these cells attained higher growth densities and underwent postconfluence.  相似文献   

11.
Muscle glycogenolytic flux and lactate accumulation during exercise are lower after 3-7 days of "short-term" aerobic training (STT) in men (e.g., Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, and Farrance B. J Appl Physiol 72: 484-491, 1992). We hypothesized that 5 days of STT would attenuate pyruvate production and the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise, because of reduced flux through the reaction catalyzed by alanine aminotransferase (AAT; pyruvate + glutamate <--> 2-oxoglutarate + alanine). Eight women [22 +/- 1 yr, peak oxygen uptake (Vo2 peak) = 40.3 +/- 4.6 ml. kg-1. min-1] performed seven 45-min bouts of cycle exercise at 70% Vo2 peak over 9 days (1 bout/day; rest only on days 2 and 8). During the first and last bouts, biopsies (vastus lateralis) were obtained at rest and after 5 and 45 min of exercise. Muscle glycogen concentration was approximately 50% higher at rest after STT (493 +/- 38 vs. 330 +/- 20 mmol/kg dry wt; P 相似文献   

12.
We used (1)H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 +/- 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 +/- 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123. 7 +/- 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 +/- 3.6 mmol/kg dry wt) and Gast (28.5 +/- 3.5 mmol/kg dry wt) were higher (P < 0.001 and P < 0.01, respectively) compared with TA (13.6 +/- 2. 4 mmol/kg dry wt). The IT values were found to be 44.8 +/- 4.6 and 36.5 +/- 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 +/- 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 +/- 11.2 (Sol), 119.1 +/- 18.5 (Gast), and 91.4 +/- 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.  相似文献   

13.
The effects of adrenaline on 45Ca2+-exchange curves for isolated hepatocytes incubated under various steady-state conditions were investigated. Kinetic analysis showed that the simplest compartment configuration consistent with each set of data was a series configuration of a three-compartment closed system comprising compartment 1 (C1), the extracellular medium, and two kinetically distinct compartments of cellular exchangeable Ca2+, C2 and C3 (C1 = C2 = C3). Subcellular fractionation of hepatocytes labelled with 45Ca2+ at 0.1 mM-Ca2+ indicated that C3 includes exchangeable Ca2+ in the mitochondria and endoplasmic reticulum. The following results were obtained from experiments conducted at 37 degrees C at five different extracellular Ca2+ concentrations. For both untreated and adrenaline-treated cells, plots of the flux from C1 to C2 as a function of the extracellular Ca2+ concentration were best described by straight lines consistent with Ca2+ influx across the plasma membrane being a diffusion process. Adrenaline increased the value of the permeability constant for Ca2+ influx by 40%. For untreated cells, plots of the flux between C2 and C3 as a function of the concentrations of Ca2+ in these compartments approached a plateau at high Ca2+ concentrations. Adrenaline caused a 3-fold increase in the concentration of Ca2+ that gives half-maximal rate of Ca2+ transport from C2 to C3. At 1.3 mM extracellular Ca2+, a decrease in incubation temperature from 37 degrees C to 20 degrees C decreased the quantity of Ca2+ in C3 and the flux and fractional transfer rates for the transport of Ca2+ between C2 and C3. At 20 degrees C adrenaline increased the quantity of Ca2+ in C3 and the fractional transfer rates for the transfer of Ca2+ from C1 to C2, and from C2 to C3. At 37 degrees C and 2.4 mM extracellular Ca2+, antimycin A plus oligomycin decreased the quantity of Ca2+ in C3 and increased the fractional transfer rate for the transport of Ca2+ from C3 to C2. In the presence of antimycin A and oligomycin, adrenaline did not increase the quantity of Ca2+ in C2 or the flux and fractional transfer rate for the transport of Ca2+ from C1 to C2, whereas these parameters were increased in the absence of the inhibitors.  相似文献   

14.
Electron probe analysis of dry cryosections was used to determine the composition of the cytoplasm and organelles of rabbit portal-anterior mesenteric vein (PAMV) smooth muscle. All analytical values given are in mmol/kg wt +/- SEM. Cytoplasmic concentrations in normal, resting muscles were: K, 611 +/- 1.7; Na, 167 +/- 2.7; Cl, 278 +/- 1.0; Mg, 36 +/- 1.1; Ca, 1.9 +/- 0.5; and P, 247 +/- 1.1. Hence, the sum of intracellular Na + K exceeded cytoplasmic Cl by 500 mmol/kg dry wt, while the calculated total, nondiffusible solute was approximately 50 mmol/kg. Cytoplasmic K and Cl were increased in smooth muscles incubated in solutions containing an excess (80 mM) of KCl. Nuclear and cytoplasmic Na and Ca concentrations were not significantly different. The mitochondrial Ca content in normal fibers was low, 0.8 +/- 0.5, and there was no evidence of mitochondrial Ca sequestration in muscles frozen after a K contracture lasint 30 min. Transmitochondrial gradients of K, Na, and Cl were small (0.9--1.2). In damaged fibers, massive mitochondrial Ca accumulation of up to 2 mol/kg dry wt in granule form and associated with P could be demonstrated. Our findings suggest (a) that the nonDonnan distribution of Cl in smooth muscle is not caused by sequestration in organelles, and that considerations of osmotic equilibrium and electroneutrality suggest the existence of unidentified nondiffusible anions in smooth muscle, (b) that nuclei do not contain concentrations of Na or Ca in excess of cytoplasmic levels, (c) that mitochondria in PAMV smooth muscle do not play a major role in regulating cytoplasmic Ca during physiological levels of contraction but can be massively Ca loaded in damaged cells, and (d) that the in situ transmitochondrial gradients of K, Na, and Cl do not show these ions to be distributed according to a large electromotive Donnan force.  相似文献   

15.
Ontogenic changes in the kinetics of exchangeable cellular calcium were studied in embryonic (ECV) and post-hatch (PHCV) chick ventricular tissue by monitoring 45Ca-efflux. The isolated whole ventricle (5 & 7 days ECV) or ventricular strips (12 & 18 days ECV and 1-2 days PHCV) were "loaded" with 45Ca (37 degrees C) and then passed through a series of tubes containing efflux solution (4 degrees C) to determine 45Ca-efflux. Curve 'peeling' of the efflux curve indicated existence of 3 kinetically distinct components of exchangeable cellular Ca2+ compartments: C1, C2 & C3. The size of C1, which was the largest in 5 & 7 days ECV decreased significantly to become minimum in 18 days ECV & PHCV. The rate constant of this compartment, however, reduced with the age of the embryo. In contrast, the size of C3 increased with the embryonic development to become the largest in 18 days ECV & PHCV. An increase in the rate constant of this compartment was also observed during embryogenesis. The size and rate constant of C2 remained unaltered during development. However, the increase in size of C3 during embryonic development indicates differentiation of Ca2+ storage sites, like sarcoplasmic reticulum (SR), during the later stages. Caffeine (10 mM) and ryanodine (10 microM) enhanced fractional escape rate during slow phase (ie 120-180 min) of efflux at all developmental stages. The magnitude of enhancement increased during later stages of development indicating greater prominence of SR with the age of embryo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
D S Lapointe  M S Olson 《Cell calcium》1991,12(10):743-753
The kinetics of calcium movements in the isolated perfused rat liver were examined using compartmental analysis of the efflux profiles of 45Ca2+ from 45Ca(2+)-equilibrated livers under a variety of calcium concentrations and hormonal treatments. From the 45Ca2+ efflux profiles, we determined that a three compartment model was appropriate to describe the movements of calcium in the liver on the time scale of the experiments. Hormonal treatment with the alpha-adrenergic agonist, phenylephrine, or the vasoactive peptide, vasopressin, during the efflux period lowered significantly the rate of transfer of Ca2+ between the internal compartments at all of the calcium concentrations employed. Also, phenylephrine treatment leads to increased transfer of Ca2+ into the liver from the perfusate. The temporal characteristics of the phenylephrine and vasopressin sensitive Ca2+ pools were examined by pulsing livers, loaded for variable periods of time with 45Ca2+, with the two hormones during the efflux of 45Ca2+ to measure the kinetics of Ca2+ exchange in the hormone-sensitive pools. Results from these experiments indicate that the rate of unstimulated Ca2+ efflux, k2, for the phenylephrine and vasopressin sensitive Ca2+ pools, modeled as a one compartment system, are the same, 0.074 and 0.078 min-1 for phenylephrine and vasopressin respectively, corresponding to half times for turnover of the pool(s) of 9.3 and 8.9 min, respectively.  相似文献   

17.
The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.  相似文献   

18.
Systemic vascular effects of hydralazine, prazosin, captopril, and nifedipine were studied in 115 anesthetized dogs. Blood flow (Q) and right atrial pressure (Pra) were independently controlled by a right heart bypass. Transient changes in central blood volume after an acute reduction in Pra at a constant Q showed that blood was draining from two vascular compartments with different time constants, one fast and the other slow. At three dose levels producing comparable reductions in systemic arterial pressure (30-40% at the highest dose), these drugs had different effects on flow distribution and venous return. Hydralazine and prazosin had parallel and balanced effects on arterial resistance of the two vascular compartments, and flow distribution was unaltered. Captopril preferentially reduced arterial resistance of the compartment with a slow time constant for venous return (-26 +/- 6%, -30 +/- 6%, -50 +/- 5% at 0.02, 0.10, and 0.50 mg X kg-1 X h-1, respectively; means +/- SEM) without altering arterial resistance of the fast time-constant compartment. Blood flow to the slow time-constant compartment was increased 43 +/- 14% at the highest dose, and central blood volume was reduced 108 +/- 15 mL. In contrast, nifedipine had a balanced effect on arterial resistance with the lowest dose (0.025 mg/kg) but caused a preferential reduction in arterial resistance of the fast time-constant compartment at higher doses (-38 +/- 4% and -55 +/- 2% at 0.05 and 0.10 mg/kg, respectively). Blood flow to the slow time-constant compartment was reduced 36 +/- 5% at the highest dose of nifedipine, and central blood volume was increased 66 +/- 12 mL. Total systemic venous compliance was unaltered or slightly reduced by each of the four drugs. These results add further evidence to the hypothesis that peripheral blood flow distribution is a major determinant of venous return to the heart.  相似文献   

19.
In order to elucidate changes in cell transport behavior of cultured human skin fibroblasts in response to acute serum depletion, we performed uptake and washout of 22Na+ and 86Rb+ as well as measurements of the intracellular Na+ and K+ levels in the presence and absence of ouabain. Pronounced and lasting increase in cellular Na+ and decrease in K+ were observed after removal of fetal bovine serum (FBS) from the medium. The sum of the Na+ and K+ contents (nEq/10(5) cells) was lower in FBS-free medium (mean +/- SD; 17.3 +/- 2.2) than in FBS-containing medium (26.2 +/- 3.8; P less than .02). Simultaneously, a decrease in cellular water volume was detected in the FBS-free medium. The cation uptake and washout data suggest that FBS removal primarily renders the cells more permeable to Na+ and K+ with a secondary stimulation of the ouabain-sensitive Na+ extrusion mechanism. FBS at a concentration of 0.2% prevented approximately 50% of the maximal increase in the 86Rb+ washout rate constant associated with FBS depletion. Ouabain (2 microM) produced an increase in the 86Rb+ washout rate constant. This effect was substantially larger in cells subjected to medium without FBS (from 0.0303 to 0.2500 min-1) than in fibroblasts incubated in medium with FBS (from 0.0107 to 0.0487 min-1). The cellular K+ content was drastically reduced by ouabain to a level not different in medium with or without FBS (33.9 +/- 4.5 to 1.75 +/- 0.38 and 16.7 +/- 1.4 to 1.4 +/- 0.13 nEq/10(5) cells, respectively). The 22Na+ washout data exhibited a three-exponential pattern. Analytical solutions of the washout data by means of two models (serial and parallel) with three compartments showed that FBS depletion resulted in increase of the size of all three compartments. It is concluded that in cultured human skin fibroblasts, FBS is essential to the maintenance of a normal Na+ and K+ homeostasis. The removal of FBS results in dramatic permutation of this homeostasis that develops within minutes and lasts for hours.  相似文献   

20.
We used autoradiography to localize 45Ca accumulated in vitro by rat kidney that had been injured by HgCl2 in vivo. HgCl2, 1 mg/kg, was administered IV to male Sprague-Dawley rats and nephrectomies were performed from 15 min-30 days later. Kidney slices were incubated in KRB buffer containing 2 mM 45Ca at 25 degrees C for 180 min. The 45Ca slice-to-medium concentration ratio (S/M) increased significantly from a control mean of 0.8 +/- 0.04 SD (n = 4) to 1.6 +/- 0.3 (n = 4) after 1 day and reached 4.6 +/- 4.2 (n = 6) after 3 days. The serum creatinine increased more rapidly, from a control mean of 0.4 +/- 0.1 mg/dl to 0.7 +/- 0.1, 3.3 +/- 0.2, 7.2 +/- 1.6 after 4 hr, 1 day, and 3 days, respectively. Autoradiographic localization of 45Ca was first evident in necrotic proximal tubule (PT) straight segments after 1 day and was maximal at 3 days. 45Ca uptake was increased by slice incubation with N2 instead of O2, but anoxia did not alter the intrarenal distribution pattern. Necrotic PTs showing 45Ca by autoradiography were also positive by the von Kossa stain. Autoradiographs prepared from paraffin or Epon sections showed the same intrarenal distribution of 45Ca as section freeze-dry autoradiographs. Increased tissue 45Ca was due primarily to uptake by nephrocalcinotic PT segments; 40Ca accumulated in vivo exchanged for 45Ca during in vitro incubation. The exchangeable intrarenal calcium observed in this autoradiographic study was due to HgCl2-induced nephrocalcinosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号