首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal precursor particles of Bacillus megaterium.   总被引:1,自引:1,他引:1       下载免费PDF全文
Pulse-labeled cells of Bacillus megaterium were converted to protoplasts, and lysates of the protoplasts were analyzed by sucrose gradient sedimentation. Precursor ribonucleoprotein (RNP) particles then appeared predominantly as 50S and 30S precursor ribosomal subunits. Polyacrylamide gel electrophoresis of the ribosomal ribonucleic acid from the 50S and 30S RNP particles confirmed their precursor nature since they were shown to contain precursor 23S and 16S ribosomal ribonucleic acid, respectively. Treatment of protoplast lysates with 0.5% deoxycholate prior to sedimentation analysis resulted in a markedly different radioactivity profile. The 50S RNP particles were no longer present, but 43S particles were observed in addition to increased amounts of pulse-labeled material sedimenting at 30S and slower. Extracts from cells broken in a French press showed a profile from sucrose gradient sedimentation similar to that of the deoxycholate-treated protoplast lysate. These data suggest that the nature of the precursor ribosomal particles appears to be a function of the method of cell disruption or detergent treatment of the cell extract preparation. The observed 50S and 30S RNP particles may be the major precursor ribosomal subunits in vivo; the slower-sedimenting species could result from some form of breakdown or change in the configuration of the 50S and 30S precursors.  相似文献   

2.
Analyses of ribosomes extracted from spores of Bacillus cereus T by a dryspore disruption technique indicated that previously reported defects in ribosomes from spores may arise during the ribosome extraction process. The population of ribosomes from spores is shown to cotain a variable quantity of free 50S subunits which are unstable, giving rise to slowly sedimenting particles in low-Mg2+ sucrose gradients and showing extremely low activity in in vitro protein synthesis. The majority of the ribosomal subunits in spores, obtained by dissociation of 70S ribosomes and polysomes, are shown to be as stable as subunits from vegetative cells, though the activity of spore polysomes was lower than that of vegetative ribosomes. In spite of the instability and inactivity of a fraction of the spore's ribosomal subunits, the activity of the total population obtained from spores by the dry disruption technique was 32% of vegetative ribosome activity, fivefold higher than previously obtained with this species. The improvement in activity and the observed variability of subunit destabilization are taken as evidence for partial degradation of spore ribosomes during extraction.  相似文献   

3.
Active 50 S ribosomal subunits from Bacillus licheniformis and Bacillus subtilis can be reconstituted in vitro from dissociated RNA and proteins. The reconstituted 50 S sub-units are indistinguishable from native 50 S subunits in sedimentation on sucrose gradients and in protein composition. The procedure used is similar to that developed for reconstitution of Bacillus stearothermophilus 50 S subunits, though the optimal conditions are somewhat different. Hybrid ribosomes can be reconstituted with 23 S RNA and proteins from different sources (B. stearothermophilus and B. licheniformis or B. subtilis). The thermal stability of these ribosomes depends on the source of the proteins, and not on the source of 23 S RNA.  相似文献   

4.
Changes in the protoplast membrane of the KM strain of Bacillus megaterium were assessed after growth at 20, 30, or 37 degrees, C. Although the overall membrane concentrations of lipids and proteins were virtually unchanged, increased culture temperature resulted in cells with membranes that contained relatively more unbranched and long-chain fatty acids and more acidic phospholipids, as well as different proportions and numbers of individual proteins. Electrophoretic analysis revealed 23, 31, or 29 protein bands, respectively, in membranes from cells grown at the three temperatures. Protoplasts from cells grown at higher temperatures were considerably less susceptible to lysis by shearing forces. As judged by passive leakage at 30 degrees C, intact cells from cultures grown at 37 degrees C were the least permeable to erythritol. Relatively low ambient concentrations of Ca2+ or Mg2+ protected protoplasts from osmotic lysis but even much higher concentrations left erythritol leakage virtually unaffected. Thus, growth temperature affected not only membrane lipis but also membrane proteins and these changes resulted in membranes with altered mechanical properties and permeabilities.  相似文献   

5.
Effects of certain common carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbon organic air pollutants on Bacillus megaterium cultures were noted. Depending on the medium used, either growth suppression or induction of atypical cell forms was observed in cultures grown in the presence of a carcinogen. By contrast, no such alterations were apparent in cultures grown in media supplemented with a noncarcinogen. Both carcinogenic and noncarcinogenic hydrocarbons exerted an enhancing influence, of varying degree, on lipogenesis, glycolysis, and methylene blue reductase activity. A higher than normal level of these reactions, however, was associated with cultures exposed to a carcinogen. In addition, infrared examination of lipids revealed unique spectral characteristics for materials extracted from carcinogen-treated cultures. No difference was noted between materials derived from noncarcinogen-treated cultures and from control cultures.  相似文献   

6.
A bacteriophage, MP13, isolated from the soil on B. megaterium QM B1551 has been found to transduce several auxotrophic markers. Transduction required inactivation of the phage to approximately 0.01% survival with UV light and it was enhanced by the absence of salts that are probably necessary for phage readsorption.  相似文献   

7.
8.
9.
Bacillus stearothermophilus 50 S ribosomal subunits have been reconstituted from a mixture of purified RNA and protein components. The protein fraction of 50 S subunits was separated into 27 components by a combination of various methods including ion exchange and gel filtration chromatography. The individual proteins showed single bands in a variety of polyacrylamide gel electrophoresis systems, and nearly all showed single spots on two-dimensional polyacrylamide gels. The molecular weights of the proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An equimolar mixture of the purified proteins was combined with 23 S RNA and 5 S RNA to reconstitute active 50 S subunits by the procedure of Nomura and Erdmann (Nomura, M., and Erdmann, V. A. (1970) Nature 226, 1214-1218). Reconstituted 52 S subunits containing purified proteins were slightly more active than subunits reconstituted with an unfractionated total protein extract in poly(U)-dependent polyphenylalanine synthesis and showed comparable activity in various assays for ribosomal function. The reconstitution proceeded more rapidly with the mixture of purified proteins than with the total protein extract. Reconstituted 50 S subunits containing purified proteins co-sedimented with native 50 S subunits on sucrose gradients and had a similar protein compsoition. Initial experiments on the roles of the individual proteins in ribosomal structure and function were performed. B. stearothermophilus protein 13 was extracted from 50 S subunits under the same conditions as escherichia coli L7/L12, and the extraction had a similar effect on ribosomal function. When single proteins were omitted from reconstitution mixtures, in most cases the reconstituted 50 S subunits showed decreased activity in polypheylalanine synthesis.  相似文献   

10.
Using two-dimensional polyacrylamide gel electrophoresis, the protein patterns from HeLa 80S and 55S nucleolar precursor particles have been compared with those of cytoplasmic 40S and 60S ribosomal subunits. The 55S particle was found to have 21 anionic and 52 cationic proteins, including 18 large subunit ribosomal proteins. The 80S precursor pattern was identical to the 55S pattern except three anionic and four cationic proteins were absent. Of those missing cations, three were large subunit proteins. However, no small subunit ribosomal proteins were detected on either precursor. Numerous high molecular weight non-ribosomal proteins were found in both precursor particles and may correspond to a class of stable nucleolar proteins.  相似文献   

11.
We have sequenced the stage V sporulation specific gene spoVG in both Bacillus megaterium and Bacillus subtilis. The open reading frames encode polypeptides of 96 and 97 residues, respectively, and have an 88.6% amino acid identity. Both genes have putative rho-independent terminators. No significant amino acid or nucleotide homology of either gene was found when compared with sequences contained in either the Genbank or EMBL data bases.  相似文献   

12.
Phosphatidyl transfer between phosphatidylethanolamine, phosphatidylglycerol or phosphatidylserine as donors and primary hydroxyl acceptors including ethanolamine, glycerol, serine and Triton X-100 has been shown to be catalysed by membrane particles derived from Bacillus megaterium strains ATCC 13632 and ATCC 14581. The rate of cardiolipin synthesis from phosphatidylglycerol in the presence of ethanolamine was an order of magnitude greater than that of phosphatidylethanolamine formation. Cardiolipin synthesis from phosphatidylethanolamine in the presence of glycerol was also observed, and was 1.5-fold greater than the formation of phosphatidylglycerol. Similar heat lability, effects of pH and of Triton X-100 for phosphatidyl transfer and cardiolipin synthesis indicate that both reactions were catalysed by cardiolipin synthase.  相似文献   

13.
A spontaneously occurring thiostrepton-resistant mutant of Bacillus megaterium has been shown to yield ribosomes lacking protein BM-L11, a protein immunologically related to Escherichia coli ribosomal protein L11. Here we have demonstrated that the mutant strain has acquired the relaxed phenotype and is unable to synthesise guanosine tetraphosphate and pentaphosphate in vivo. Ribosomes from the mutant strain are unable to support the synthesis of these two compounds in vitro, but this deficiency can be overcome by re-addition of purified protein BM-L11 to the ribosomes. Thus protein BM-L11 appears to be indispensable for the synthesis of guanosine tetraphosphate and pentaphosphate; the implications of this observation are discussed.  相似文献   

14.
Bacillus megaterium grows in a medium containing L-tryptophan as the sole carbon, nitrogen, and energy source. Kynurenine, anthranilic acid, and catechol are metabolic intermediates, suggesting that this organism used the anthranilic acid pathway for tryptophan degradation. Cells that grow on L-tryptophan oxidize kynurenine, alanine, and anthranilic acid and the presence of tryptophan oxygenase (EC 1.13.1.12), kynureninase (EC 3.7.1.3), and catechol oxygenase (EC 1.13.1.1) in cell extracts provide additional evidence for the degradative pathway in B. megaterium. Tryptophan oxygenase is inhibited by sodium azide, potassium cyanide, and hydroxylamine, indicating that the enzyme has a functional heme group. D-Tryptophan is not a substrate for tryptophan oxygenase, and the D-isomer does not inhibit this enzyme. Formamidase (EC 3.5.1.9) and anthranilate hydroxylase are not detectable in extracts. Tryptophan catabolism is inducible in B megaterium and is subject to catabolite repression by glucose and glutamate. Arginine does not cause repression, and kynurenine induces both tryptophan oxygenase and kynureninase.  相似文献   

15.
Active 30S ribosomal subunits were isolated from vegetative and sporulating cells of Bacillus subtilis. Both subunits were able to function in polyuridylic acid of phage phie messenger ribonucleic acid-dependent protein synthesis in vitro. The sporulation 30S subunits were highly active in polyuridylic acid-dependent polyphenylalanine synthesis but showed a reduced activity in the presence of natural messenger ribonucleic acid as compared with their vegetative counter-parts. The reduced activity was independent of the source of 50S particles and initiation factors (vegetative or sporulation). The alteration of the 30S sporulation subunits appears to be related to the sporulation process, since the same subunits isolated from stationary-phase cells of an asporogenic mutant did not show any impairment in protein synthesis in vitro.  相似文献   

16.
Plasmid-mediated transformation in Bacillus megaterium.   总被引:4,自引:8,他引:4       下载免费PDF全文
A transformation system was developed for Bacillus megaterium by using antibiotic resistance plasmid deoxyribonucleic acid molecules derived from Staphylococcus aureus and Bacillus cereus. Lysozyme-generated protoplasts of B. megaterium allowed uptake of plasmid deoxyribonucleic acid in the presence of polyethylene glycol. Transformants expressed the antibiotic resistance determinants present on the plasmid deoxyribonucleic acid, and reisolated plasmid deoxyribonucleic acid yielded restriction endonuclease digestion patterns identical to those of the donor deoxyribonucleic acid.  相似文献   

17.
18.
Dyhydrodipicolinate reductases were purified 100-fold from crude extracts of B. cereus and B. megaterium and their properties were compared with those of the reductase from B. subtilis. The molecular weights of the reductases of B. cereus and B. megaterium were fount to be 155,000 and 150,000, respectively. These reductases were shown to be free of flavin, unlike the B. subtilis enzyme, which contains flavin. Both NADPH and NADH acted as coenzymes for these two reductases. NADPH being three or four times more effective than NADH. The Km values for NADPH and dihydrodipicolinate were 8 micrometer and 62 micrometer, respectively, with B. cereus reductase, and 13 micrometer and 59 micrometer with B. megaterium reductase. The pH optima of the enzymes from B. cereus and B. megaterium were pH 7.4 and 7.2, respectively. The reductases were inhibited by dipicolinate noncompetitively with respect to dihydrodipicolinate and the Ki values were 85 micrometer and 140 micrometer, respectively. Lysine and diaminopimelate were not inhibitory. The properties of the reductases from B. cereus and B. megaterium were similar, but they differed considerably from those of the B. subtilis enzyme. However, all three Bacillus reductases were markedly inhibited by dipicolinate, unlike the enzyme from E. coli.  相似文献   

19.
Triggering of germination in Bacillus megaterium QM B1551 spores with D-glucose was studied. First, the interaction of glucose with spores for less than 1 min resulted in triggering almost 90% of the spores after the glucose was removed by dilution. Therefore only a brief time is needed for glucose to trigger germination, and then the continuous presence of glucose is not necessary. Detectable uptake of glucose began 2 to 3 min after absorbance loss started, and a non-metabolizable glucose analog, methyl-alpha-D-glucopyranoside, triggered germination in the absence of detectable uptake. Several inhibitors that reduced or eliminated glucose uptake did not block triggering of germination. Therefore, glucose uptake may be a relatively late event and not a prerequisite for triggering of germination.  相似文献   

20.
Information on the biosynthesis of phospholipids in bacteria has been derived principally from the study of Escherichia coli and other gram-negative organisms. We have now carried out a detailed study of the pathways of phospholipid biosynthesis in the gram-positive organism Bacillus megarterium KM in relation to investigations on the biogenesis of lipid asymmetry in membranes. Radioactive precursors such as 32Pi and [3H]palmitate initially label phosphatidylethanolamine much more than phosphatidylglycerol. This raised the possibility that phosphatidylglycerol may be the precursor of phosphatidylethanolamine in a pathway different from that in E. coli. Phosphatidylglycerol is known to be highly reactive metabolically, since it functions as a donor of phosphatidyl residues in the synthesis of cardiolipin and as a donor of glycerophosphate residues in the synthesis of teichoic acids and of membrane-derived oligosaccharides. The large pool of phosphatidylglycerol would dilute the radioactive isotope, slowing the initial rate of incorporation of label into phosphatidylethanolamine. However, assays of cell-free extracts revealed no evidence for such a novel pathway. Instead, phosphatidylserine synthase (cytidine 5'-diphosphate-diglyceride:L-serine phosphatidyl transferase) and phosphatidylserine decarboxylase were detected, although at low levels. These results suggest that the pathway in B. megaterium is the same as that in E. coli in which phosphatidylserine, derived from cytidine 5'-diphosphate-diglyceride, is the precursor of phosphatidylethanolamine. The lag in the appearance of label in phosphatidylethanolamine appears to be the effect of a considerable pool of phosphatidylserine (ca. 5 to 10% of the total phospholipid) in certain strains of B. megaterium. The lag in labeling can be correlated with the size of the pool of phosphatidylserine. Pulse-chase experiments in vivo support the conclusion that in B. megaterium phosphatidylserine is not derived from phosphatidylglycerol. Rates of turnover of the membrane phospholipids of B. megaterium have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号