首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal firing response in the sensorimotor cortex to tactile (non-conditioned) and acoustic (conditioned) stimuli was investigated in trained cats before and after iontophoretic application of serotonin and lysergide. Three functionally distinct groups of neurons were identified from the response produced by presenting tactile and acoustic stimuli. Applying serotonin was found to facilitate preliminary and residual spike response induced by tactile stimulation; it also facilitates and modulates response in many cortical neurons to conditioned stimuli. Facilitation takes the form of reduced latency of response and increased numbers of spikes in response to conditioned stimulus presentation, especially at the initial phase of response to sound and immediately after the onset of conditioned reflex motion. Additional neurons formerly unresponsive to acoustic stimuli joined in the reaction under the effects of serotonin. Changed response patterns often evolve following minor fluctuations in background activity level. It is suggested that facilitation of response following iontophoretic serotonin application in the neocortex is associated with activation of excitatory serotonin receptors (S2). The lysergide-induced increase in background and evoked activity noted during experimentation can apparently be put down to blockade of inhibitory serotonon (S1B) receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 337–347, May–June, 1990.  相似文献   

2.
The effects were studied in waking cats of brief stimulation (20 stimuli at a rate of 400 Hz) of the central gray matter (CGM) and dorsal raphe nucleus (DRN) on high-threshold jaw-opening reflex (HJOR) evoked by tooth pulp stimulation during blockade of serotonin synthesis produced by application of 300 mg/kg parachlorophenylalanine (PCPA) i.p. Inhibitory effects of CGM and DRN stimulation had already declined in comparison with post-stimulation (but pre-PCPA) level within 24 h after PCPA application; 96 h afterwards, inhibition of HJOR induced by CGM and DRN stimulation had become only minimal: amplitude of the reflex had declined to 30–35% and duration of inhibitory effects ws 200–250 msec. It is therefore deduced that serotonin contributes to the HJOR depression induced by CGM and DRN stimulation and the possible involvement of other neuromodulators in this effect is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 45–52, January–February, 1989.  相似文献   

3.
Neuronal response in the caudate nucleus to presentation of a wide variety of visual and other sensory stimuli was investigated in waking cats. Pronounced discrepancies in background activity of unknown origin as well as differing neuronal activity level were noted in adjacent sections of the nucleus. Of the neurons from which readings of response to sensory stimulation could be made, some reacted to presentation of exclusively visual and others to tactile stimuli; a third group responded to a combination of visual and somatic stimulation only. Response could only be produced in cells of all types by a high level of activity in the animal. Visual stimuli attracting the animal's interest proved to be the most effective form of stimulation. Ipsi- and contralateral sides of the animal's body were both represented in the caudate nucleus of each hemisphere. Neuronal response in the caudate nucleus may be compared with that produced by application of similar stimuli in cells belonging to different cortical areas.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 3–10, January–February, 1990.  相似文献   

4.
In the case of intracellular recording in the ganglia of the apple snail, neurons giving responses of similar dynamics, both in response to orthodromic stimulation and in the case of a single microionophoresis of acetylcholine (AC) to their soma, were detected. Multiple repeated applications of AC lead to extinction of the response, similar to the habituation of these neurons to orthodromic rhythmic stimulation. This extinction is associated with desensitization of the receptors of the membrane. An artificial change in the resting potential (RP) of certain neurons within definite limits in response to the application of AC induces a prolonged exciting-inhibitory response. This may be evidence of the simultaneous existence of exciting and inhibitory receptors in the postsynaptic membrane, the activity of which is regulated by the level of the RP of the nerve cell.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 543–549, September–October, 1971.  相似文献   

5.
Extracellular investigations on the activity of 269 caudate neurons during electrical stimulation of the midbrain reticular formation were carried out during chronic experiments on cats. Stimuli of different sensory modalities were used: auditory, mechanical, and visual. A response was observed to both reticular and peripheral stimulation in single neurons. The former produced an orthodromic response in 53% of caudate neurons, notable for its high probability of occurrence. A total of 23% of caudal neurons responded to this type of stimulation and application of stimuli of a single modality, while 14% responded polymodally. An excitatory response pattern prevailed during all types of stimulation. By applying twin stimuli to 100 caudate neurons, a capacity for interaction between reticular and acoustic inputs was discovered. Interaction was similarly observed in neurons which had reacted neither to separate application of both stimuli nor to either of the stimuli in isolation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 101–110, January–February, 1987.  相似文献   

6.
Efferent activity was investigated in the phrenic nerve during startle reflex manifesting as somatic nerve discharges (lower intercostal nerves and the nerve endings) in chloralose anesthetized cats. Inhibition (usually of short duration, lasting 23–36 msec) of inspiration activity was found to be the main component of response in the phrenic nerve in the shaping of "low threshold" startle reflex produced by acoustic and tactile stimuli and stimulation of low threshold peripheral afferents. Reflex discharge prevailed amongst the response patterns produced in the phrenic nerve by stimulating high threshold afferents, i.e., early (propriospinal) and late (suprasegmental, arising from stimulating intercostal nerve) or late only (when stimulating the hindlimb nerves). Two patterns of late response could be distinguished, one on inspiration (found in roughly 3 out of 4 experiments) and other on exhalation — the respiratory homologs of somatic startle reflex. Response pattern is described throughout the respiratory cycle. Structure and respiratory modulation of reflex responses produced in the phrenic nerve by stimulating bulbar respiratory structure are also examined. Possible neurophysiological mechanisms underlying phrenic response during the shaping of startle reflex are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 473–482, July–August, 1987.  相似文献   

7.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

8.
The response pattern of reticulo-spinal (RS) neurons in two reticulo-spinal structures (n. reticularus pontis caudalis and n. reticularis gigantocellularis) to both electrical (somatic) nerve stimulation and natural mechanical innocuous (tapping with varying force) and noxious (pinch and prick) stimulation were investigated in chloralose-anesthetized cats. Bulbar and pontine neurons were found to vary considerably in their sensory characteristics: of the former 43% were activated only by high-threshold electrical nerve stimulation and noxious stimuli, while the remainder responded to innocuous stimuli as well. In the case of pontine neurons 81% produced a response to stimulation of low-threshold nerve fibers, and to innocuous as well as noxious stimuli. A relationship was found between the sensory characteristics of reticulo-spinal neurons and their axon conductance velocities. Various aspects and the likely functional significance of specialization in brainstem neurons of the pontine and bulbar reticular formation come under discussion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 461–469, July–August, 1986.  相似文献   

9.
Summary The physiological, pharmacological and morphological characteristics of guinea-pig vas deferens supplied by hypogastric nerves rendered inactive by decentralisation were compared with those of vas deferens in which the nerve supply had been chronically stimulated for 3–9 days using implanted electrodes. No change was seen in decentralised preparations prior to 7 days, but from 8–15 days, increased sensitivity to application of noradrenaline in vitro was observed, which was shown to be related to reduced transmitter uptake by nerve terminals as well as to an increase in postjunctional sensitivity; there was also increased fatigability 7–14 days following decentralisation. Continuous stimulation of hypogastric nerves at 2 Hz for 4–8 h daily for 4–8 days resulted in enhanced transmitter uptake and reduced responses to noradrenaline; this was associated with a slight increase in noradrenaline content and a faster adrenergic neuromuscular response with a shorter latency. No appreciable changes in nerve or muscle structure studied by electron microscopy were observed following decentralisation, but there was an increase of between 12.5 and 29.6% in the number of close (< 100 nm) neuromuscular junctions following chronic stimulation for 8 days.  相似文献   

10.
The study was performed on effects of serotonin and its antagonists (mianserin, propranolol, and metergoline) on efferent electrical activity in nerves cervicalis superior, cervicalis inferior, and columellaris innervating muscles withdrawing body of Lymnaea stagnalis into the shell. Serotonin had a dual effect on the off-reactions caused by rhythmical light stimulation of mollusc skin. The number of responses to series of stimuli increased at serotonin concentrations of about 10−8-10−7 M and decreased at its higher concentrations. In many cases, serotonin antagonists also had a dual effect depending on their concentration. All studied substances slightly affected duration and latent period of individual off-responses. Serotoninergic regulation is suggested to participate in central chains of the pond snail defensive shadow reflex.__________Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 2, 2005, pp. 134–138.Original Russian Text Copyright © 2005 by Samarova, Zhukov, Sudoplatov.  相似文献   

11.
Field potentials evoked in the graunular layer of the cerebellar paramedian lobule of unanesthetized cats in response to stimulation of the sensomotor cortex and limb nerves contained slow negative waves, appearing after a long latent period, which were generated by granule cells. In the case of nerve stimulation this component was recorded both inside and outside the projection zone of the corresponding limb. Cortical stimulation by single stimuli or series of stimuli not more than 1.8–2.5 times above threshold strength led to the appearance of evoked potentials only inside the corresponding projection zone. The long-latency component of field potentials evoked by cerebral stimulation followed high frequencies of repetitive stimulation and was less sensitive to the action of barbital anesthesia than the analogous component of potentials evoked by nerve stimulation. In the case of combined cerebral and nerve stimulation the long-latency components underwent summation. It is concluded that mossy fibers of slowly-conducting spino- and cerebrocerebellar tracts innervate different granule cells in the cerebellar cortex.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 379–385, July–August, 1982.  相似文献   

12.
The neuronal and total surface activity of the cortical representation of the motor analyzer in the region of the posterior sigmoid gyrus of the cat brain in response to rhythmical light, sound, and electrical stimuli and their complexes was analyzed. Two groups of neurons were found, of which the first is characterized by a gradual decrease in the number of peaks in the response and by their subsequent disappearance and the second by the absence of a discharge in response to stimulation and by its development before the application of the next stimulus. The first group was comprised of neurons which do not have background activity and the second was made up of neurons with a background activity of 0.4–3.7 imp/sec. This reorganization of the activity of cortical neurons in response to rhythmical stimulation is considered to be a habituation phenomenon.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 245–251, May–June, 1971.  相似文献   

13.
The effect of stimulation of the ipsilateral and contralateral red nuclei on motoneurons of the hypoglossal nucleus was studied in cats anesthetized with chloralose and pentobarbital. In 35 (69%) of the 51 motoneurons tested, PSPs were generated in response to stimulation of the red nuclei by series of 3 to 5 stimuli of threshold strength and with a frequency of 500–600/sec. Of this number, 33 motoneurons responded to stimulation by EPSPs, whose latent periods varied from 3.5 to 14.0 msec (mean value for the ipsilateral red nucleus 5.7±0.75, for the contralateral nucleus 6.8±0.8 msec), whereas two motoneurons responded (after 6.2 msec) by IPSPs. Of the 35 motoneurons responding to stimulation of the red nuclei, stimulation of the lingual nerve evoked EPSPs in 31 and IPSPs in 4 (two of them were inhibited by rubrofugal impulses). IPSPs were generated as a result of stimulation of the lingual nerve in 16 motoneurons which did not respond to rubrofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 62–66, January–February, 1978.  相似文献   

14.
In chronic experiments on cats, the effects were investigated of iontophoretic application of the adrenomimetic ephedrine and the -blocker obsidan (propranolol) on neuronal response induced in the motor cortex by conditioned stimulus presentation during performances of instrumental lever-pressing response. Inhibition of background firing activity and response in most neurons induced by conditioned stimuli was produced by ephedrine, whereas obsidan application enhanced this activity. It was concluded that steady, tonic inhibitory action of the noradrenergic system on background and induced firing activity in cortical neurons takes place during free-ranging behavior. Temporary reinforcement of noradrenergic influences could be an important element in mechanisms of external inhibition during stressful situations, aversive effects, and distractive stimuli.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 680–688, September–October, 1990.  相似文献   

15.
Spike response was investigated in 104 neurons of the nucleus reticularis thalami (R) and adjoining thalamic nuclei to acoustic, tactile, and visual stimuli during chronic experiments on cats. Of the test neurons, 29% responded to acoustic stimulation and 11% showed no preference in relation to different acoustic stimuli. Minimum latencies of response to sounds measured 12–37 msec in excitatory and 18–27 msec in inhibitory cells. Duration of excitation produced by acoustic stimuli reached 50–250 msec; inhibition lasted 27–190 msec. Most cells belonging to this nucleus were excited by different stimuli; the proportion of inhibitory neurons did not exceed 4–10%.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 451–461, July–August, 1989.  相似文献   

16.
Unit responses of the sensomotor cortex to paired electrical stimulation and visual cortex, applied either simultaneously or after various delays (from 0 to 200 msec) depend on the order of application of the stimuli and on the interval between them. If stimulation of the sensomotor cortex was used in a conditioning role the response continued unchanged when the intervals between stimuli were increased to 200 msec. If, however, stimulation of the sensomotor cortex had a testing role interaction was observed between the stimuli so that responses to both first and second stimuli were blocked; this was exhibited most clearly for intervals of 40–80 msec between stimuli. The blocking effect persisted on some neurons with delays of up to 200 msec between stimuli, while the response of others to both the first and the second stimulus was restored.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 628–635, November–December, 1973.  相似文献   

17.
Crayfish escapes from threatening stimuli to the abdomen by tailflipping upwards and forwards. This lateral giant (LG)-mediated escape reaction habituates readily upon repetitive sensory stimulation. Using an isolated abdominal nerve cord preparation, we have analyzed the change in LG activity by applying additional sensory stimulation after different periods following habituation to characterize the retention of LG habituation. Results show that the LG mediated response habituates more quickly, but the retention time is shorter, as repetitive sensory stimulation is applied at progressively shorter inter-stimulus time intervals. The spike response of LG recovers quickly, within several minutes after habituation, but they fail to spike when an additional stimulus is applied after specific long periods following habituation. The critical period of the delay for this decrease in excitability of LG is dependent on the inter-stimulus time interval of the initial repetitive stimulus. As the inter-stimulus interval became longer, the delay needed for decrease in excitability became shorter. Furthermore, the local injection of 10–6 mol l–1 octopamine into the neuropil just following habituation promotes the achievement of decrease in excitability. No effects were observed when 10–6 mol l–1 serotonin and tyramine were injected. These results suggested octopamine promotes decrease in excitability of LG following habituation.  相似文献   

18.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

19.
The effect of stimulation of the mesencephalic central gray matter and raphe nuclei on jaw opening reflexes evoked by excitation of high-threshold (dental pulp) and low-threshold (A-alpha) fibers of the infraorbital nerve afferents was studied in cats anesthetized with chloralose and pentobarbital. The jaw opening reflex evoked by stimulation of the dental pulp was shown to be effectively suppressed by conditioning stimulation of the central gray matter and raphe nuclei. The reflex evoked by stimulation of low-threshold infraorbital nerve afferents also was depressed (but less deeply and for a shorter period than the reflex evoked by stimulation of the dental pulp) during stimulation of the raphe nuclei and caudal zone of the central gray matter, but was unchanged after stimulation of the points located in the rostral zone of the central gray matter. Application of single stimuli or bursts of five stimuli with a frequency of 100 Hz had no effect on the reflexes studied. Short-term stimulation with a burst of 10–20 stimuli with a following frequency of 200–400 Hz led to inhibition of the reflexes, which lasted 450–1000 msec. Long-term stimulation of the central gray matter and raphe nuclei for 30 sec with a frequency of 50 Hz caused inhibition of jaw opening reflexes evoked by stimulation of both high- and low-threshold afferents for 60 min. Impulses from the central gray matter and raphe nuclei thus have a mainly inhibitory action on the jaw opening reflex evoked by stimulation of high-threshold afferents, but they act less effectively on the reflex evoked by stimulation of low-thres-hold afferents. The duration of inhibition depends essentially on the parameters of stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 374–387, May–June, 1984.  相似文献   

20.
Postsynaptic potentials evoked in accessory nerve motoneurons by stimulation of the ipsilateral and contralateral red nuclei were investigated in acute experiments on cats anesthetized with chloralose and pentobarbital. Polysynaptic EPSPs with latent periods of 5.2 to 16 (mean 9.1 ± 0.7) msec and from 5.5 to 18 (mean 10.3 ± 0.9) msec, respectively, appeared in motoneurons of the accessory nerve in response to stimulation of the contralateral and ipsilateral red nuclei. A minimum of two or three stimuli was necessary to produce EPSPs in these motoneurons. In response to single stimulation of the contralateral and ipsilateral red nuclei EPSPs appeared in four motoneurons of the trapezius muscle with latent periods of 2.5 to 5.0 and 3.0 to 5.2 msec, respectively. An increase in the number of stimuli led to action potential generation by motoneurons. The functional role of such activation is discussed.A. A. Bogomolets Institue of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 532–536, September–October, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号