首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   

2.
The current interest in cell wall biosynthesis is expanding because of the increasing evidence that the properties of the cell wall mediate cellular interactions during growth, development and differentiation. Much effort has been put forward to the identification of glycosyltransferases because of their obvious importance in polysaccharide synthesis. Enzymes involved in nucleotide sugar production and transport are also important because of the potential to manipulate the composition of cell walls through substrate level control. Molecular genetics have begun to uncover genes for important enzymes in polysaccharide biosynthesis including glycosyltransferases and enzymes of nucleotide sugar metabolism; but at this time, much is inferred from comparisons to bacteria, yeast and animal cells. This review examines the production and transport of nucleotide sugars, the protein structure of glycosyltransferases, and implications for the cellular mechanisms of cell wall biosynthesis.  相似文献   

3.
4.
Summary The aspartic protease gene of a zygomycete fungus Mucor pusillus was expressed in Saccharomyces cerevisiae under the control of the yeast GAL7 promoter. A putative preproenzyme with an NH2-terminal extension of 66 amino acids directed by the gene was processed in yeast cells and the mature enzyme, whose NH2-terminus was identical to that of the Mucor enzyme, was efficiently secreted into the medium at a concentration exceeding 150 mg/l. The enzyme secreted from the recombinant yeast was more glycosylated than the native Mucor enzyme but its enzymatic properties were almost identical with those of the native enzyme, which has been used as a milk coagulant in cheese manufacture.  相似文献   

5.
The activity of alkaline phosphatase demonstrated by histochemical techniques was shown at the cell wall of the yeast form ofParacoccidioides brasiliensis at 3, 6, and 9 days of culture. The results showed a very active deposition at the cell wall as early as 9 days of culture of the fungus which made us think an inactive salt precipitate was also present.  相似文献   

6.
7.
Summary The sequences ofSaccharomyces carlsbergensis ribosomal protein (r-protein) SL25* and its equivalents fromCandida utilis (CL25),Escherichia coli (EL23),Bacillus stearothermophilus (BL23),Mycoplasma capricolum (ML23),Marchantia polymorpha chloroplasts (McpL23), andNicotiana tabacum chloroplasts (NcpL23) were examined using a computer program that evaluates the extent of sequence similarity by calculating correlation coefficients for each pair of residues in two proteins from a number of physical properties of individual amino acids. Comparison matrices demonstrate that the prokaryotic sequences (including McpL23 and NcpL23) can be aligned unambiguously by introducing small internal deletions/insertions at three specific positions. A similar comparison brought to light a clear evolutionary relationship between the prokaryotic and the yeast proteins despite the fact that visual inspection of these sequences revealed only limited similarity. The alignment deduced from this comparison shows the two yeast r-proteins to have acquired a long (50–60 amino acids) N-terminal extension as well as a 13-amino acid-long deletion near the C-terminus. The significance of these findings in terms of the evolution of r-proteins in general and the biological function of various parts of the SL25 protein in particular is discussed.  相似文献   

8.
Candida albicans is an important human pathogen that causes systemic infections, predominantly among populations with weakened immune systems. The morphological transition from the yeast to the hyphal state is one of the key factors in C. albicans pathogenesis. Owing to their location at the host-pathogen interface, the cell wall and associated proteins are of interest, especially with respect to the yeast to hyphal transition. This study entailed the proteomic analysis of differentially regulated proteins involved in this transition. The protein profiles of C. albicans DTT/SDS-extractible proteins and the cyanogen bromide (CNBr)/trypsin-extractable proteins of a cell wall-enriched fraction from yeast and hyphae were compared. In total, 107 spots were identified from the DTT/SDS-extractible cell wall-enriched fraction, corresponding to 82 unique proteins. Of these DTT/SDS-extractible proteins, 14 proteins were upregulated and 10 were downregulated in response to hyphal induction. Approximately 6-9% of total cell wall-protein-enriched fraction was found to be resistant to DTT/SDS extraction. Analysis of the DTT/SDS-resistant fraction using a CNBr/trypsin extraction resulted in the identification of 29 proteins. Of these, 17 were identified only in the hyphae, four were identified only in the yeast, and eight were identified in both the yeast and hyphae.  相似文献   

9.
10.
2-Cys peroxiredoxin (Prx) is a novel cellular peroxidase that reduces peroxides in the presence of thioredoxin, thioredoxin reductase, and nicotinamide adenine dinucleotide phosphate (NADPH) and that functions in H(2)O(2)-mediated signal transduction. Recent studies have shown that 2-cys Prx can be inactivated by cysteine overoxidation in conditions of oxidative stress. Therefore, peroxidase activity, rather than the protein level, of 2-cys Prx is the more important measure to predict its cellular function. Here, we introduce a modified activity assay method for mammalian 2-cys Prx based on yeast nonselenium thioredoxin reductase. Yeast thioredoxin reductase is expressed in Escherichia coli cells and purified at high yield (40 mg/L of culture broth) as an active flavoprotein by combined diethyl aminoethyl (DEAE) and phenyl hydrophobic chromatography. The optimal concentrations of yeast thioredoxin and thioredoxin reductase required to achieve maximum mammalian 2-cys Prx activity are 3.0 and 1.5 microM, respectively. This modified assay method is useful for measuring 2-cys Prx activity in cell lysates and can also be adapted for a 96-well plate reader for high-throughput screening of chemical compounds that target 2-cys Prx.  相似文献   

11.
Two distinct, cyclic AMP-independent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from yeast have been isolated and highly purified. The first of the enzymes, protein kinase 1 A, phosphorylates casein and phosvitin, and its cellular protein substrate is unknown. The second enzyme, protein kinase 1 B, phosphorylates two strongly acidic proteins, L44 and L45, of the 60 S ribosomal subunit.  相似文献   

12.
The fungal cell wall field, traditionally focused on polysaccharide composition and synthesis, retains a certain static architectural imagery of structural rigidity and integrity, with the wall offering protection from a harsh environment. This picture of the wall is increasingly changing to that of a bustling construction site, as research uncovers the organizational complexity of its assembly. With recent molecular and genomic studies on Saccharomyces cerevisiae, cell wall synthesis and biology appear increasingly to be dynamic and adaptable processes that are fully integrated with the underlying cytoskeletal and polarity machinery that drive cell cycle progression.  相似文献   

13.
Immunological cross-reactivity between cell wall proteins obtained from two yeast genera (Candida tropicalis and Saccharomyces cerevisiae) is reported. Specific retention of two cell wall proteins from Saccharomyces cerevisiae by an immunoabsorbent column coupled with antibodies against phosphate binding protein 2 (PiBP2) from Candida tropicalis allowed to generate antibodies against the proteins from S. cerevisiae. These antibodies were effective in inhibiting phosphate uptake by S. cerevisiae cells. The proteins from S. cerevisiae displayed a phosphate binding activity which was inhibited in the presence of the forementioned antibodies. These results and the observation that the amount of these proteins in the shock fluid was dependent of the growth conditions (i.e., in the presence or in the absence of phosphate) support the idea that these proteins are involved in the high affinity phosphate transport system.Abbreviations Pi inorganic phosphate - PiBP2 phosphate binding protein 2 obtained from Candida tropicalis - Tris Tris(hydroxymethyl)-aminoethane - MES [2-(N-Morpholino)] ethanesulfonic acid - EDTA ethylene diamine tetraacetic acid, disoldium salt - PMSF phenylmethyl sulfonyl fluoride - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

14.
15.
Saccharomyces cerevisiae Kre6 is a type II membrane protein with amino acid sequence homology with glycoside hydrolase and is essential for β-1,6-glucan synthesis as revealed by the mutant phenotype, but its biochemical function is still unknown. The localization of Kre6, determined by epitope tagging, is a matter of debate. We raised anti-Kre6 rabbit antiserum and examined the localization of Kre6 and its tagged protein by immunofluorescence microscopy, subcellular fractionation in sucrose density gradients, and immunoelectron microscopy. Integration of the results indicates that the majority of Kre6 is in the endoplasmic reticulum; however, a small but significant portion is also present in the secretory vesicle-like compartments and plasma membrane. Kre6 in the latter compartments is observed as strong signals that accumulate at the sites of polarized growth by immunofluorescence. The truncated Kre6 without the N-terminal 230-amino acid cytoplasmic region did not show this polarized accumulation and had a severe defect in β-1,6-glucan synthesis. This is the first evidence of a β-1,6-glucan-related protein showing the polarized membrane localization that correlates with its biological function.  相似文献   

16.
Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.  相似文献   

17.
Summary The two mutants (abs) and (wal) affecting the cell morphology of yeast lead also to higher in vivo activities of the cell wall enzymes acid phosphatase. invertase and melibiase.The investigations were supported by a fellowship from the Max Kade Foundation New York.  相似文献   

18.
Abe H  Shimma Y  Jigami Y 《Glycobiology》2003,13(2):87-95
A glycosyltransferase was fused to the yeast cell wall protein Pir, which forms the Pir1-4 protein family and is incorporated into the cell wall by an unknown linkage to be displayed at the yeast cell surface. We first expressed the PIR1-HA-gma12+ fusion, in which gma12+ encodes alpha-1,2-galactosyltransferase from the fission yeast Schizosaccharomyces pombe under the Saccharomyces cerevisiae GAPDH promoter. The alpha-1,2-galactosyltransferase activity was detected at the surface of the intact cells that produce Pir1-HA-Gma12 fusion. To further demonstrate sequential oligosaccharide synthesis, two plasmids containing PIR1-HA-KRE2 and PIR2-FLAG-MNN1 fusion genes were constructed in which KRE2 and MNN1 encode alpha-1,2-mannosyltransferase and alpha-1,3-mannosyltransferase from S. cerevisiae, respectively. The intact yeast cells transformed with these two plasmids added mannoses initially with an alpha-1,2 linkage and subsequently with an alpha-1,3 linkage to the alpha-1,2-mannobiose acceptor in the presence of a GDP-mannose donor, demonstrating that Pir1 and Pir2 can be used as anchors to simultaneously immobilize several glycosyltransferases at the yeast cell surface. Based on the high acceptor specificity of glycosyltransferases, we propose a simple in vitro method for oligosaccharide synthesis using the yeast intact cell as a biocatalyst.  相似文献   

19.
Reevaluation and comparison of seemingly contradictory literature data on the mode of synthesis of wall polysaccharides during the cell cycle ofSaccharomyces cerevisiae explained the source of discrepancies and demonstrated their general consonance in the following points: 1. The rate of synthesis of glucan and mannan is not constant and does not increase continuously throughout the entire cell cycle. 2. The rate of synthesis of both polysaccharides is considerably reduced at the time of cell division and in the prebudding phase.  相似文献   

20.
Incubation of galactose treated Kluyveromyces bulgaricus yeast cells in EDTA/phosphate-buffered saline led to an extract possessing hemagglutinating and yeast flocculating properties. Purification of this extract by affinity chromatography and gel filtration gave two lectin forms, Kb-CWL I and Kb-CWL II, with an apparent molecular mass of 38,000 and 150,000 Da, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that Kb-CWL I and Kb-CWL II were dimeric and octameric of a subunit of 18,900 Da. At high concentration, purified Kb-CWL I associated to give Kb-CWL II. This association seemed to be independent on pH. The two lectin forms were glycoproteins, the peptide counterpart was very rich in Lys, Glu, and Gly, and the carbohydrate part represented 1% of the whole molecule and was composed of Glc, Man, and Ara. The two lectin forms (KB-CWL I and Kb-CWL II) agglutinated human red blood cells and flocculated EDTA-treated K. bulgaricus yeast cells. The activity of both lectin forms required Ca2+ ions, while Sr2+ showed some competitive inhibition. Optimal activity was obtained within a pH range of 4-6.5 for both forms. Temperatures of 80-90 degrees C for 20 min, or proteolytic treatment reduced irreversibly the activity of Kb-CWL I and Kb-CWL II. The role of the cell wall phosphopeptidomannan as a ligand and a potential physiological receptor of these lectin forms was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号