首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VL-VH expression by monoclonal antibodies recognizing avian lysozyme   总被引:6,自引:0,他引:6  
Seven BALB/c hybridoma antibodies directed against the protein antigen, hen egg-white lysozyme c (HEL), were characterized on the basis of their ability to bind lysozymes from 10 species of birds, and their ability to bind HEL competitively. The hybridomas were separable into three complementation groups based upon competitive interactions. The fine specificities of all antibodies were distinct, but two, HyHEL-8 and HyHEL-10, had very similar and overlapping reactivity patterns. To test the hypothesis that VL-VH pairing correlates with binding specificity, the N-terminal amino acid sequences were determined to identify the VL and VH isotopes (subgroups) of the anti-HEL antibodies. HyHEL-8 and -10 shared the VK23 light chain isotype and nearly identical heavy chains in Kabat subgroup I, whereas the heavy and light chain isotypes of all other antibodies differed from HyHEL-8 and -10 and from each other. The heavy and light chain isotypes expressed by HyHEL-8 and -10 are also expressed by XRPC-25, a DNP-binding myeloma protein that does not bind lysozyme. These results are discussed with respect to the contributions of various genetic sources of structural diversity to antibody functional diversity.  相似文献   

2.
Bispecific mAb contain two Ag-combining sites each composed of a different combination of H and L chains. The resulting ability to react with and cross-link two different Ag makes these molecules a novel tool for application in biology and medicine. Intact bispecific mAb can be made only by biologic means, e.g., by fusion of two established hybridomas. Appropriate assembly of bispecific mAb by these hybrid cells depends on H = L chain behavior: strong preferential homologous H-L pairing would benefit the yield of bispecific antibodies. We have analyzed the Ig species produced by eight hybrid hybridomas (quadromas). Quadroma-produced IgG was fractionated and characterized for H and L chain content. The Ag reactivities were verified by using ELISA and immunofluorescence. Preferential homologous pairing was seen only with a minority of H-L chain pairs; L chains associated on average in a random fashion with H chains. This indicates that in the B cells from which the parental hybridomas were obtained, no strong selection had occurred on H-L recombination. Our results extend recent biochemical competitive H-L reassociation experiments, where on average an at random association of L chains with H chains was found; evidently this random association occurs in our biologic system as well. For the biologic production of bispecific antibodies this means that only in a small number of cases the "ideal" producer will be met. From the viewpoint of generation of antibody diversity, our results favor a large freedom for combinatorial binding of H and L chains during B cell ontogeny.  相似文献   

3.
Structural and serologic studies on murine A/J monoclonal anti-arsonate antibodies resulted in the identification of a second idiotype family (Id36-60) in addition to the predominant idiotype family (IdCR). Id36-60, unlike IdCR, is a dominant idiotype in the BALB/c strain but is a "minor" idiotype in the A/J strain. The complete heavy and light chain variable region (VH and VL) amino acid sequences of a representative Id36-60 hybridoma protein from both the A/J and BALB/c strains have been determined. There are only four amino acid sequence differences between the VH of antibody 36-60 (A/J) and antibody 1210.7 (BALB/c). Two of these differences arise from single nucleotide changes in which the A/J and BALB/c Id36-60 VH germline gene sequences differ. The two other differences are the result of somatic mutation in hybridoma protein 36-60. In addition, Id36-60 heavy chains employ the same D and JH3 segments in both strains. The entire Vk2 VL of 36-60 and 1210.7 differ by only two amino acids, suggesting that like the heavy chains, they are derived from highly homologous VL genes. The same Jk segment is used in both antibodies. A comparison of the amino acid sequence data from Id36-60-bearing hybridomas suggests that a heavy chain amino acid difference accounts for the diminished arsonate binding by the 1210.7 hybridoma protein. Because the 1210.7 heavy chain is the unmutated product of the BALB/c VH gene, somatic mutation in VH may be required to enhance Ars affinity in this system.  相似文献   

4.
The antigen-binding site of antibodies from vertebrates is formed by combining the variable domains of a heavy chain (VH) and a light chain (VL). However, antibodies from camels and llamas are an important exception to this in that their sera contain, in addition, a unique kind of antibody that is formed by heavy chains only. The antigen-binding site of these antibodies consists of one single domain, referred to as VHH. This article reviews the mutations and structural adaptations that have taken place to reshape a VH of a VH-VL pair into a single-domain VHH with retention of a sufficient variability. The VHH has a potent antigen-binding capacity and provides the advantage of interacting with novel epitopes that are inaccessible to conventional VH-VL pairs.  相似文献   

5.
Five murine A/J strain anti-digoxin mAb (35-20, 40-40, 40-120, 40-140, and 40-160) have highly homologous H and L chain V regions, only differing by somatic mutation, yet differ in affinity and specificity. The availability of the VH and VL genomic clones from one hybridoma, 40-140, has now allowed studies involving in vitro mutagenesis and chain recombination among these five hybridomas. To determine the relative contributions of the mutations found in either VH or VL to the overall binding properties of these antibodies, we recombined the 40-140VH with the VL of each hybridoma. The 40-140VH gene was transfected into hybridoma variants that produce only VL. The recombinant antibodies show that the mutations present in VH, rather than in VL, affect the fine specificity properties of these antibodies, whereas, the mutations among both VH and VL chains are important in determining antigen affinity. From mutations present in VH that affect fine specificity properties, the comparison of the antibody sequences, and from the previously measured binding properties, we predicted and tested selected VH mutations for their ability to alter specificity or affinity by doing site-directed in vitro mutagenesis. The results for the somatic mutations found in this group of antibodies show: 1) VH mutations control the fine specificity properties that distinguish different members of this group; 2) in particular, VH residues 54 and 55 in CDR2 control the distinguishing characteristics of specificities between these antibodies; and 3) by mutagenesis, we had the unusual result of being able to alter Ag specificity without affecting affinity. A computer model of the 40-140 antibody binding site was generated which indicates that VH residues 54 and 55 are highly accessible.  相似文献   

6.
We have determined the nucleotide sequences of the expressed VH and Vk genes from 13 secondary (2 degrees) hemagglutinin (HA) (Sb) specific hybridomas derived from a single mouse. These antibodies share an Id, H37-68 (68Id) that dominates the 2 degrees HA(Sb) response in this mouse, but is rare or absent from 2 degrees responses of other mice. We find that these antibodies derive from five clones. The H chains of these antibodies are encoded by a single VH gene joined to a variety of DH and JH genes. The length of complementarity-determining region (CDR) 3 and sequence of the D-J junction are restricted, suggesting selection on CDR3 of the H chain. The L chains are more diverse. In the presented examples, they are encoded by the Vk21C and Vk21E genes and a Vk9 gene, and are joined to Jk1, 2, or 4. Each antibody is extensively mutated. The nature and distribution of the mutations suggests that 68Id-producing cells have been selected by Ag, although there are differences regarding the domain (VH, Vk, or both) in which mutations were selected. The implications of these findings on the idiosyncratic nature of the 68Id antibody response to HA(Sb) are discussed. There are two unusual characteristics regarding somatic mutation in these hybridomas. Whereas the expressed VH and Vk21 genes appear to have accumulated mutations at a high rate (1 to 1.5 x 10(-3)/base pairs/division, the expressed Vk9 genes appear to have accumulated mutations at a 5 to 15-fold lower rate than the expressed VH genes in the same cells. There is also a surprisingly high number of parallel silent somatic mutations in the VH genes, of which all but one are clustered to a 28-bp region in framework region 2 and CDR 2-encoding segments. The probability that this could have occurred by a random mutational process is essentially zero.  相似文献   

7.
Tyrosine is an important amino acid in protein-protein interaction hot spots. In particular, many Tyr residues are located in the antigen-binding sites of antibodies and endow high affinity and high specificity to these antibodies. To investigate the role of interfacial Tyr residues in protein-protein interactions, we performed crystallographic studies and thermodynamic analyses of the interaction between hen egg lysozyme (HEL) and the anti-HEL antibody HyHEL-10 Fv fragment. HyHEL-10 has six Tyr residues in its antigen-binding site, which were systematically mutated to Phe and Ala using site-directed mutagenesis. The crystal structures revealed several critical roles for these Tyr residues in the interaction between HEL and HyHEL-10 as follows: 1) the aromatic ring of Tyr-50 in the light chain (LTyr-50) was important for the correct ternary structure of variable regions of the immunoglobulin light chain and heavy chain and of HEL; 2) deletion of the hydroxyl group of Tyr-50 in the heavy chain (HTyr-50) resulted in structural changes in the antigen-antibody interface; and 3) the side chains of HTyr-33 and HTyr-53 may help induce fitting of the antibody to the antigen. Hot spot Tyr residues may contribute to the high affinity and high specificity of the antigen-antibody interaction through a diverse set of structural and thermodynamic interactions.  相似文献   

8.
BACKGROUND: Camelid serum contains a large fraction of functional heavy-chain antibodies - homodimers of heavy chains without light chains. The variable domains of these heavy-chain antibodies (VHH) have a long complementarity determining region 3 (CDR3) loop that compensates for the absence of the antigen-binding loops of the variable light chains (VL). In the case of the VHH fragment cAb-Lys3, part of the 24 amino acid long CDR3 loop protrudes from the antigen-binding surface and inserts into the active-site cleft of its antigen, rendering cAb-Lys3 a competitive enzyme inhibitor. RESULTS: A dromedary VHH with specificity for bovine RNase A, cAb-RN05, has a short CDR3 loop of 12 amino acids and is not a competitive enzyme inhibitor. The structure of the cAb-RN05-RNase A complex has been solved at 2.8 A. The VHH scaffold architecture is close to that of a human VH (variable heavy chain). The structure of the antigen-binding hypervariable 1 loop (H1) of both cAb-RN05 and cAb-Lys3 differ from the known canonical structures; in addition these H1 loops resemble each other. The CDR3 provides an antigen-binding surface and shields the face of the domain that interacts with VL in conventional antibodies. CONCLUSIONS: VHHs adopt the common immunoglobulin fold of variable domains, but the antigen-binding loops deviate from the predicted canonical structure. We define a new canonical structure for the H1 loop of immunoglobulins, with cAb-RN05 and cAb-Lys3 as reference structures. This new loop structure might also occur in human or mouse VH domains. Surprisingly, only two loops are involved in antigen recognition; the CDR2 does not participate. Nevertheless, the antigen binding occurs with nanomolar affinities because of a preferential usage of mainchain atoms for antigen interaction.  相似文献   

9.
To support antibody therapeutic development, the crystal structures of a set of 16 germline variants composed of 4 different kappa light chains paired with 4 different heavy chains have been determined. All four heavy chains of the antigen-binding fragments (Fabs) have the same complementarity-determining region (CDR) H3 that was reported in an earlier Fab structure. The structure analyses include comparisons of the overall structures, canonical structures of the CDRs and the VH:VL packing interactions. The CDR conformations for the most part are tightly clustered, especially for the ones with shorter lengths. The longer CDRs with tandem glycines or serines have more conformational diversity than the others. CDR H3, despite having the same amino acid sequence, exhibits the largest conformational diversity. About half of the structures have CDR H3 conformations similar to that of the parent; the others diverge significantly. One conclusion is that the CDR H3 conformations are influenced by both their amino acid sequence and their structural environment determined by the heavy and light chain pairing. The stem regions of 14 of the variant pairs are in the ‘kinked’ conformation, and only 2 are in the extended conformation. The packing of the VH and VL domains is consistent with our knowledge of antibody structure, and the tilt angles between these domains cover a range of 11 degrees. Two of 16 structures showed particularly large variations in the tilt angles when compared with the other pairings. The structures and their analyses provide a rich foundation for future antibody modeling and engineering efforts.  相似文献   

10.
We have examined how many different H chain variable (VH) and kappa-chain variable (Vk) germ-line genes are used in the antibody response to the influenza virus A/PR/8/34 hemagglutinin (PR8 HA), and have assessed how the expression of individual VH and/or Vk genes contributes to the generation of specificity for the HA. A panel of 51 hybridoma antibodies that recognize two antigenic regions on the HA were compared for the sequence of their Ig H and L chain V regions. The hybridomas were obtained from 28 individual BALB/c mice that had been immunized with PR8 under a variety of primary and secondary response immunization protocols. The degree and pattern of sequence similarity suggests that 29 different VH genes drawn from seven different VH gene families, and 25 different Vk genes drawn from 12 different Vk gene families were used in this panel. Based on current estimates of the total numbers of VH and Vk genes in the mouse, this suggests that between 2.5 and 10% of the entire VH and Vk germ-line repertoires were used by these hybridomas. Despite this extensive diversity, some V genes were repetitively identified among these hybridomas, and were most often expressed in the context of specific VH/Vk combinations. Because antibodies that used identical VH/Vk combinations also usually displayed similar reactivity patterns with a panel of mutant viruses, this indicates that VH/Vk pairing can be important in establishing the specificity of antibodies for the HA.  相似文献   

11.
A rabbit anti-idiotypic antiserum was raised against a monoclonal human IgM kappa(Me) in order to analyze the possible modulation of idiotypic expression by Fab constant domains. IgM(Me) fragments, subunits, and domains were prepared by chemical and enzymatic cleavages. All molecular species were shown to have a well-defined secondary and tertiary structure by circular dichroism. Full recombination between domains and subunits was ascertained by difference spectroscopy. The expression of the idiotype on native and recombined fragments, domains, and subunits was quantitated in a competitive enzyme-linked immunosorbent assay (ELISA). Reduced and alkylated Fab, isolated H and L chains, purified Fv(Me), intact VH and VL domains and H-L, VH-L, VL-H, and VH-VL recombinants were compared on a molar basis to native Fab(Me) for idiotypic expression. VH-specific determinants were found, whereas the L chains were virtually devoid of idiotypic activity. Both the peptic FV(Me) fragment, which is composed of intact VH and VL domains, and the recombined VH-VL heterodimer were found to be fourfold less active for idiotype expression than native Fab(Me). However, full inhibition was achieved at high molar concentrations, suggesting that all the idiotopes present on Fab(Me) were expressed on FV(Me) but with a reduced antigenicity. Comparison of VH-L and VL-H hybrid molecules revealed that the presence of the C mu 1 domain was sufficient to restore full idiotypic expression as compared with native Fab(Me). These data support the hypothesis that the first constant domain of the mu heavy chain alters the quaternary interaction between the variable domains, and therefore modulates the expression of the idiotype through longitudinal interactions that are not affected by reduction of the inter-H-L chain disulfide bond.  相似文献   

12.
The antigen-binding capacity of the paired variable domains of an antibody is well established. The observation that the isolated heavy chains of anti-hapten antibodies retain some antigen-binding capacity in the absence of light chains led to attempts to obtain an even smaller antigen-binding unit in a VH format. Unfortunately, the poor solubility, the reduced affinity for the antigen and the irreproducible outcome showed that additional protein engineering would be required to successfully generate single-domain antibody fragments. By serendipity, it was discovered that this engineering is already performed continuously in nature. Part of the humoral immune response of camels and llamas is based largely on heavy-chain antibodies where the light chain is totally absent. These unique antibody isotypes interact with the antigen by virtue of only one single variable domain, referred to as VHH. Despite the absence of the VH–VL combinatorial diversity, these heavy-chain antibodies exhibit a broad antigen-binding repertoire by enlarging their hypervariable regions. Methods are described to tap the VHH repertoire of an immunised dromedary or llama. These VHH libraries contain a high titre of intact antigen-specific binders that were matured in vivo. Synthetic libraries of a ‘camelised’ human VH, a mouse VH or a camelid VHH scaffold with a randomised CDR3 could constitute a valid alternative to immune libraries to retrieve useful single-domain antigen binders. The recombinant VHH that are selected from such libraries are well expressed, highly soluble in aqueous environments and very robust. Some in vivo matured VHH were also shown to be potent enzyme inhibitors, and the low complexity of the antigen-binding site is an asset in the design of peptide mimetics. Because of their smaller size and the above properties, the VHH clearly offer added-value over conventional antibody fragments. They are expected to open perspectives as enzyme inhibitors and intrabodies, as modular building units for multivalent or multifunctional constructs, or as immuno-adsorbents and detection units in biosensors.  相似文献   

13.
While many antibodies with strong antigen-binding affinity have stable variable regions with a strong antibody heavy chain variable region fragment (V(H))/antibody light chain variable region fragment (V(L)) interaction, the anti-lysozyme IgG HyHEL-10 has a fairly strong affinity, yet a very weak V(H)/V(L) interaction strength, in the absence of antigen. To investigate the possible relationship between antigen-binding affinity and V(H)/V(L) interaction strength, a novel phage display system that can switch two display modes was employed. We focused on the two framework region 2 regions of the HyHEL-10 V(H) and V(L), facing each other at the domain interface, and a combinatorial library was made in which each framework region 2 residue was mixed with that of D1.3, which has a far stronger V(H)/V(L) interaction. The phagemid library, encoding V(H) gene 7 and V(L) amber codon gene 9, was used to transform TG-1 (sup+), and the phages displaying functional variable regions were selected. The selected phages were then used to infect a nonsuppressing strain, and the culture supernatant containing V(H)-displaying phages and soluble V(L) fragment was used to evaluate the V(H)/V(L) interaction strength. The results clearly showed the existence of a key framework region 2 residue (H39) that strongly affects V(H)/V(L) interaction strength, and a marked positive correlation between the antigen-binding affinity and the V(H)/V(L) interaction, especially in the presence of a set of particular V(L) residues. The effect of the H39 mutation on the wild-type variable region was also confirmed by a SPR biosensor as a several-fold increase in antigen-binding affinity owing to an increased association rate, while a slight decrease was observed for the single-chain variable region.  相似文献   

14.
The V region genes (VH and VL) used in the immune response of BALB/c mice to alprenolol, a synthetic beta-adrenergic ligand, were examined by Southern blot and nucleotide sequence analyses. Fourteen anti-alprenolol hybridomas utilize 10 different combinations of six Vk, one V lambda, eight VH, three JK, one J lambda, and three JH genes. In addition to the combinatorial association, somatic mutations and junctional variation of assembled genes further contribute to diversity of the anti-alprenolol response. Although differing both in length and structure, the five H-chain third complementarity-determining region analyzed contain several acidic residues. Neither V gene utilization, nor H-chain third complementarity-determining-region structure can be simply correlated with affinity of the antibodies for the ligand. The anti-alprenolol V genes were compared with the corresponding sequences of unrelated antibodies. Antibody 37A4 shares a VH gene with anti-(Glu60Ala30Tyr10)n random terpolymer and anti-nitrophenyl antibodies, and a Vk gene with two anti-oxazolone antibodies. Antibodies 14C3 and 17C1 use the same germ-line VH and Vk genes as do anti-anti-idiotypic antibodies of the (Glu60Ala30Tyr10) system. These data demonstrate the genetic diversity of the antibody response to alprenolol, and illustrate the extensive flexibility of the immune system.  相似文献   

15.
The variable (V) region sequences of six immunoglobulin M (IgM, kappa) monoclonal autoantibodies that recognize bromelinized isologous red blood cells, obtained by fusions of peritoneal cells from NZB or CBA/J nonimmunized mice with BALB/c myeloma cells, were determined by direct mRNA sequencing. The V regions of the light chains (VL) are almost identical with one another, as are the V regions of the heavy chains (VH), which, however, differ by six linked-base substitutions, depending on the strain of mice producing the autoantibodies. Such variations may reflect allelic differences. The VH segments determined have no obvious correspondence to any VH genes identified so far. They may belong to the small VH group 4, where 73% homology, at the most, can be calculated at the protein level for codons 1 to 94. Alternatively, the VH regions may be members of a new group of VH sequences not previously found. The V kappa regions appear closely homologous to members of the V kappa-9 subgroup of myeloma proteins of unknown antigen-binding specificity. The joining segments, J kappa and JH, used by the autoantibodies investigated, originate from the J kappa 2 and JH1 germ-line gene segments, respectively. The nine base-long diversity segments, D, derive from one member of the germ-line D gene SP2 family.  相似文献   

16.
The primary (1 degree) antibody response to (T,G)-A--L shows limited heterogeneity, consisting mostly of side chain-specific antibodies that bind GT and that express the TGB5 idiotype (Id). The secondary (2 degrees) response is very diverse: antibodies that bind the backbone A--L constitute a third of the response, and a high proportion of the side chain-specific antibodies do not bind GT and are TGB5 Id-. To provide a molecular basis for understanding this difference in repertoire expression, we analyzed the Ig genes used by heavy and light chains of 1 degree and 2 degrees side chain-specific anti-(T,G)-A--L hybridoma antibodies (HP). Southern blot restriction analysis and nucleotide sequence analysis of the expressed genes used by three TGB5 Id+ 2 degrees HP showed usage of three different VH genes in two VH gene families (36-60 and J558), different D segments, and two different Vk1 genes (the Vk1A and Vk1C subgroups). Thus, antibody heterogeneity in the 2 degrees response is contributed by combinatorial diversity of distinct germ-line genes. Nucleotide sequence analysis of the expressed genes used by TGB5 Id+ 1 degree HP showed use of highly homologous VH genes in the J558 VH gene family and highly homologous Vk1A genes. The majority of TGB5 Id+ 1 degree HP from different donors gave similar heavy and similar light chain gene rearrangements by Southern blot restriction analysis, after correction for known or potential J region differences. The combined nucleotide sequence and Southern blot restriction analysis data suggest that most 1 degree B cells use the same or very similar VH and Vk genes, i.e., the 1 degree response is paucigenic. Different D segments were used by the TGB5 Id+ 1 degree and 2 degrees HP that were sequenced, and there was no apparent correlation between TGB5 idiotypy and VH, D gene, or JH gene usage. However, all TGB5 Id+ HP sequenced used highly homologous genes from the Vk1 group. Expression of a Vk1 light chain correlates with, but is not sufficient for, TGB5 idiotypy, because one GT-binding, TGB5 Id- HP was found to use a Vk1C subgroup light chain. By Southern blot and nucleotide sequence analysis, the Vk genes used by two TGB5 Id+ 2 degrees HP from xid mice are highly homologous, if not identical to the Vk1A gene(s) used by 1 degree and 2 degrees Id+ HP from wild-type mice.  相似文献   

17.
The V region sequences of two anti-DNA (A52, D42) and two anti-RNA (D44, D444) autoantibodies, derived from lupus prone NZB/NZW F1 female mice, were determined by mRNA sequencing. The sequences had the following features: 1) there was no clear sequence relationship between anti-DNA and anti-RNA antibodies; 2) there were no major similarities between any of the L chain sequences and each VL gene segment belonged to a different mouse VK subgroup; 3) the H chains of the two anti-RNA antibodies showed closely related sequences of VH gene segments and very similar third complementarity determining regions (CDR3); 4) the H chains of the two anti-DNA antibodies had VH segments belonging to different VH gene families but had a unique and similar combination of D segments and junctional sequences, suggesting a common recognition element for Ag and/or for idiotypic regulation in the H chain CDR3; and 5) the VH gene segment of one anti-DNA antibody (D42) was found to be very similar to the VH gene segment of a CBA mouse hybridoma antibody (6G6) which binds to the environmental Ag phosphocholine. The three-dimensional structure of the Fv-region of the anti-DNA antibody (D42) was modeled by computer and a stretch of poly(dT), ssDNA was docked to a cleft in the antibody combining site, formed by the three H chain CDR and by CDR1 and CDR3 of the L chain. The cleft is characterized by a preponderance of arginine and tyrosine residues, lining both the walls and base of the cleft.  相似文献   

18.
The predominance of germ-line genes in IgM expression was evaluated from the nucleotide sequences of mRNA, derived from 10 hybridoma cell lines, coding for the VH and VL regions of anti-5-dimethylaminonaphthalene-1-sulfonyl (anti-Dns) IgM antibody. At least six germ-line VH gene segments distributed among four families are used in this response. Seven of the 10 independently rear-ranged VH genes were identified as germ line, with the other three possibly germ line. In all of them the D and JH portions retained the germ-line sequences of the D and JH segments from which they were derived. Maximum diversity was found in the D segments and the use of noncoded nucleotides at the VH-D and D-JH junctions. Of the eight cell lines expressing the lambda light chains, all were germ line and involved the three subtypes. Maximum affinity for the homologous ligand was found among the seven cell lines identified as expressing germ-line gene segments. Thus any somatic mutation among the remaining 3 cell lines did not provide enhanced affinity and the observed affinity of each cell line can be described as germ-line affinity. It is further suggested that the anti-Dns selectivity of the IgM antibodies is associated primarily with the CDR3 regions.  相似文献   

19.
The atomic structure of an antibody antigen-binding fragment (Fab) at 2.45 A resolution shows that polysaccharide antigen conformation and Fab structure dictated by combinatorial diversity and domain association are responsible for the fine specificity of the Brucella-specific antibody, YsT9.1. It discriminates the Brucella abortus A antigen from the nearly identical Brucella melitensis M antigen by forming a groove-type binding site, lined with tyrosine residues, that accommodates the rodlike A antigen but excludes the kinked structure of the M antigen, as envisioned by a model of the antigen built into the combining site. The variable-heavy (VH) and variable-light (VL) domains are derived from genes closely related to two used in previously solved structures, M603 and R19.9, respectively. These genes combine in YsT9.1 to form an antibody of totally different specificity. Comparison of this X-ray structure with a previously built model of the YsT9.1 combining site based on these homologies highlights the importance of VL:VH association as a determinant of specificity and suggests that small changes at the VL:VH interface, unanticipated in modeling, may cause significant modulation of binding-site properties.  相似文献   

20.
Domain antibodies: proteins for therapy   总被引:15,自引:0,他引:15  
Occurring naturally in "heavy chain" immunoglobulins from camels, and now produced in fully human form, domain antibodies (dAbs) are the smallest known antigen-binding fragments of antibodies, ranging from 11 kDa to 15 kDa. dAbs are the robust variable regions of the heavy and light chains of immunoglobulins (VH and VL respectively). They are highly expressed in microbial cell culture, show favourable biophysical properties including solubility and temperature stability, and are well suited to selection and affinity maturation by in vitro selection systems such as phage display. dAbs are bioactive as monomers and, owing to their small size and inherent stability, can be formatted into larger molecules to create drugs with prolonged serum half-lives or other pharmacological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号