首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpes simplex virus 1 (HSV-1) mutants that lack the γ(1)34.5 gene are unable to replicate in the central nervous system but maintain replication competence in dividing cell populations, such as those found in brain tumors. We have previously demonstrated that a γ(1)34.5-deleted HSV-1 expressing murine interleukin-12 (IL-12; M002) prolonged survival of immunocompetent mice in intracranial models of brain tumors. We hypothesized that M002 would be suitable for use in clinical trials for patients with malignant glioma. To test this hypothesis, we (i) compared the efficacy of M002 to three other HSV-1 mutants, R3659, R8306, and G207, in murine models of brain tumors, (ii) examined the safety and biodistribution of M002 in the HSV-1-sensitive primate Aotus nancymae following intracerebral inoculation, and (iii) determined whether murine IL-12 produced by M002 was capable of activating primate lymphocytes. Results are summarized as follows: (i) M002 demonstrated superior antitumor activity in two different murine brain tumor models compared to three other genetically engineered HSV-1 mutants; (ii) no significant clinical or magnetic resonance imaging evidence of toxicity was observed following direct inoculation of M002 into the right frontal lobes of A. nancymae; (iii) there was no histopathologic evidence of disease in A. nancymae 1 month or 5.5 years following direct inoculation; and (iv) murine IL-12 produced by M002 activates A. nancymae lymphocytes in vitro. We conclude that the safety and preclinical efficacy of M002 warrants the advancement of a Δγ(1)34.5 virus expressing IL-12 to phase I clinical trials for patients with recurrent malignant glioma.  相似文献   

2.
The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.  相似文献   

3.
Herpes simplex virus mutants lacking the gamma(1)34.5 gene are not destructive to normal tissues but are potent cytolytic agents in human tumor cells in which the activation of double-stranded RNA-dependent protein kinase (PKR) is suppressed. Thus, replication of a Deltagamma(1)34.5 mutant (R3616) in 12 genetically defined cancer cell lines correlates with suppression of PKR but not with the genotype of RAS. Extensive analyses of two cell lines transduced with either dominant negative MEK (dnMEK) or constitutively active MEK (caMEK) indicated that in R3616 mutant-infected cells dnMEK enabled PKR activation and decreased virus yields, whereas caMEK suppressed PKR and enabled better viral replication and cell destruction in transduced cells in vitro or in mouse xenografts. The results indicate that activated MEK mediates the suppression of PKR and that the status of MEK predicts the ability of Deltagamma(1)34.5 mutant viruses to replicate in and destroy tumor cells.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) ICP34.5 gene is a neurovirulence gene in mice. In addition, some ICP34.5 mutants have been reported to have a reduced efficiency of induced reactivation as measured by in vitro explantation of latently infected mouse ganglia. However, since spontaneous reactivation is almost nonexistent in mice, nothing has been reported on the effect of ICP34.5 mutants on spontaneous reactivation in vivo. To examine this, we have deleted both copies of the ICP34.5 neurovirulence gene from a strain of HSV-1 (McKrae) that has a high spontaneous reactivation rate in rabbits and used this mutant to infect rabbit eyes. All rabbits infected with the ICP34.5 mutant virus (d34.5) survived, even at challenge doses greater than 4 x 10(7) PFU per eye. In contrast, a 200-fold-lower challenge dose of 2 x 10(5) PFU per eye was lethal for approximately 50% of rabbits infected with either the wild-type McKrae parental virus or a rescued ICP34.5 mutant in which both copies of the ICP34.5 gene were restored. In mice, the 50% lethal dose of the ICP34.5 mutant was over 10(6) PFU, compared with a value of less than 10 PFU for the rescued virus. The ICP34.5 mutant was restricted for replication in rabbit and mouse eyes and mouse trigeminal ganglia in vivo. The spontaneous reactivation rate in rabbits for the mutant was 1.4% as determined by culturing tear films for the presence of reactivated virus. This was more than 10-fold lower than the spontaneous reactivation rate determined for the rescued virus (19.6%) and was highly significant (P < 0.0001, Fisher exact test). Southern analysis confirmed that the reactivated virus retained both copies of the ICP34.5 deletion. Thus, this report demonstrates that (i) the ICP34.5 gene, known to be a neurovirulence gene in mice, is also important for virulence in rabbits and (ii) in vivo spontaneous reactivation of HSV-1 in the rabbit ocular model, although reduced, can occur in the absence of the ICP34.5 gene.  相似文献   

5.
Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors.  相似文献   

6.
Autophagy is postulated to play a role in antiviral innate immunity. However, it is unknown whether viral evasion of autophagy is important in disease pathogenesis. Here we show that the herpes simplex virus type 1 (HSV-1)-encoded neurovirulence protein ICP34.5 binds to the mammalian autophagy protein Beclin 1 and inhibits its autophagy function. A mutant HSV-1 virus lacking the Beclin 1-binding domain of ICP34.5 fails to inhibit autophagy in neurons and demonstrates impaired ability to cause lethal encephalitis in mice. The neurovirulence of this Beclin 1-binding mutant virus is restored in pkr(-/-) mice. Thus, ICP34.5-mediated antagonism of the autophagy function of Beclin 1 is essential for viral neurovirulence, and the antiviral signaling molecule PKR lies genetically upstream of Beclin 1 in host defense against HSV-1. Our findings suggest that autophagy inhibition is a novel molecular mechanism by which viruses evade innate immunity and cause fatal disease.  相似文献   

7.
In a recent report, the neurovirulence of herpes simplex virus type 1 (HSV-1) was mapped to the ICP34.5 gene (J. Chou, E. R. Kern, R. J. Whitley, and B. Roizman, Science 250:1262-1266, 1990). In this report, specific mutations within ICP34.5 were constructed in HSV-1 strain 17syn+ to determine the effects of these mutations in a fully neurovirulent isolate. It was found that termination of the ICP34.5 gene after the N-terminal 30 amino acids resulted in a mutant, 17termA, which was 25- to 90-fold reduced in neurovirulence. This reduction of neurovirulence was associated with restricted replication of the mutant virus in mouse brain. The reduced replication phenotype was also evident in the trigeminal and dorsal root ganglia following inoculation at the periphery. 17termA was capable of replicating with wild-type kinetics in mouse footpads, and therefore the restriction seen in neural tissues was not due to a generalized replication defect in mouse cells. Significantly, replication of the mutant was also restricted in the mouse cornea in vivo and in confluent primary mouse embryo cells and mouse 10T1/2 cells in vitro. However, 17termA replicated with much greater efficiency in subconfluent mouse embryo cells, suggesting that the physiological state of the cell may be an important factor for productive replication of this mutant. Restoration of the ICP34.5 gene to the mutant resulted in a virus which displayed wild-type neurovirulence and replication kinetics in all cells and tissues tested.  相似文献   

8.
We report the construction of a cell line constitutively expressing the glycoprotein B (gB) of herpes simplex virus (HSV) 1. The cell line was constructed in two steps. In the first, a baby hamster kidney cell line was transfected with the DNA of a plasmid containing the neomycin phosphotransferase gene that confers resistance to the antibiotic G418 and the gene specifying a temperature-sensitive (ts-) alpha 4 protein of HSV-1, the major viral regulatory protein. A clonal cell line, alpha 4/c113, selected for resistance to the antibiotic G418, expressed high levels of alpha 4 protein constitutively. Superinfection of these cells with HSV-2 resulted in twofold induction of the resident HSV-1 alpha 4 gene. In the second step, alpha 4/c113 cells were transfected with the DNA of a plasmid carrying the gB gene and the mouse methotrexate resistance dihydrofolate reductase gene. A clonal cell line, alpha 4/c113/gB, selected for methotrexate resistance expressed gB constitutively. Expression of both gB and alpha 4 continued unabated for at least 32 serial passages. Cells passaged serially in medium containing both methotrexate and G418 after passage 10 contained a higher copy number of the alpha 4 gene and produced larger amounts of both gB and alpha 4 proteins than did cells maintained in medium containing methotrexate alone. Expression of gB was dependent on the presence of functional alpha 4 protein inasmuch as expression of gB ceased on shift up to nonpermissive temperatures, when shifted to permissive temperatures, the cell line reinitiated expression of gB after a delay commensurate with the length of incubation at the nonpermissive temperature, and the cell-resident HSV-1 gB gene was expressed at the nonpermissive temperature in cells infected with a recombinant expressing a ts+ alpha 4 protein and an HSV-2 gB. The properties of the alpha 4/c113 cell line suggest that it may express other viral genes induced by alpha 4 protein constitutively, provided that the product is not toxic to the cells.  相似文献   

9.
Despite intensive research efforts and therapeutic advances over the last few decades, the pediatric neural crest tumor, neuroblastoma, continues to be responsible for over 15% of pediatric cancer deaths. Novel therapeutic options are needed for this tumor. Recently, investigators have shown that mice with syngeneic murine gliomas treated with an engineered, neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal neural cells. We hypothesized that M002 would also be effective in the neural crest tumor, neuroblastoma. We showed that M002 infected, replicated, and decreased survival in neuroblastoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly decreased tumor growth, and that this effect was augmented with the addition of ionizing radiation. Importantly, survival could be increased by subsequent doses of radiation without re-dosing of the virus. Finally, these studies showed that the primary entry protein for oHSV, CD111 was expressed by numerous neuroblastoma cell lines and was also present in human neuroblastoma specimens. We concluded that M002 effectively targeted neuroblastoma and that this oHSV may have potential for use in children with unresponsive or relapsed neuroblastoma.  相似文献   

10.
We describe here the neurovirulence properties of a herpes simplex virus type 1 gamma34.5 second-site suppressor mutant. gamma34.5 mutants are nonneurovirulent in animals and fail to grow in a variety of cultured cells due to a block at the level of protein synthesis. Extragenic suppressors with restored capacity to replicate in cells that normally do not support the growth of the parental gamma34.5 deletion mutant have been isolated. Although the suppressor virus reacquires the ability to grow in nonpermissive cultured cells, it remains severely attenuated in mice and is indistinguishable from the mutant gamma34.5 parent virus at the doses investigated. Repairing the gamma34.5 mutation in the suppressor mutant restores neurovirulence to wild-type levels. These studies illustrate that (i) the protein synthesis and neurovirulence defects observed in gamma34.5 mutant viruses can be genetically separated by an extragenic mutation at another site in the viral chromosome; (ii) the extragenic suppressor mutation does not affect neurovirulence; and (iii) the attenuated gamma34.5 mutant, which replicates poorly in many cell types, can be modified by genetic selection to generate a nonpathogenic variant that regains the ability to grow robustly in a nonpermissive glioblastoma cell line. As this gamma34.5 second-site suppressor variant is attenuated and replicates vigorously in neoplastic cells, it may have potential as a replication-competent, viral antitumor agent.  相似文献   

11.
《Autophagy》2013,9(1):24-29
The lysosomal pathway of autophagy is the major catabolic mechanism for degrading long-lived cellular proteins and cytoplasmic organelles. Recent studies have also shown that autophagy (xenophagy) may be used to degrade bacterial pathogens that invade intracellularly. However, it is not yet known whether xenophagy is a mechanism for degrading viruses. Previously, we showed that autophagy induction requires the antiviral eIF2alpha kinase signaling pathway (including PKR and eIF2alpha) and that this function ofeIF2alpha kinase signaling is antagonized by the herpes simplex virus (HSV-1) neurovirulence gene product, ICP34.5. Here, we show quantitative morphologic evidence of PKR-dependent xenophagic degradation of herpes simplex virions and biochemical evidence of PKR and eIF2alpha-dependent degradation of HSV-1 proteins, both of which are blocked by ICP34.5. Together, these findings indicate that xenophagy degrades HSV-1 and that this cellular function is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. Thus, autophagy-related pathways are involved in degrading not only cellular constituents and intracellular bacteria, but also viruses.  相似文献   

12.
Chick embryo fibroblast-passaged Flury high egg passage (HEP) rabies virus failed to kill nude mice or cyclophosphamide-treated mice when inoculated intracerebrally. The virus regained neurovirulence for adult mice after three passages in mouse neuroblastoma C1300 cells (NA cells). However, even after 20 passages in NA cells, the virulence could not be increased to the level shown by the virus passaged several times in suckling mice. Some physiological and biological properties of the virus showing and not showing mouse virulence after five serial passages and after one single passage in NA cells, respectively, were compared.  相似文献   

13.
PKR-dependent autophagic degradation of herpes simplex virus type 1   总被引:2,自引:0,他引:2  
The lysosomal pathway of autophagy is the major catabolic mechanism for degrading long-lived cellular proteins and cytoplasmic organelles. Recent studies have also shown that autophagy (xenophagy) may be used to degrade bacterial pathogens that invade intracellularly. However, it is not yet known whether xenophagy is a mechanism for degrading viruses. Previously, we showed that autophagy induction requires the antiviral eIF2alpha kinase signaling pathway (including PKR and eIF2alpha) and that this function of eIF2alpha kinase signaling is antagonized by the herpes simplex virus (HSV-1) neurovirulence gene product, ICP34.5. Here, we show quantitative morphologic evidence of PKR-dependent xenophagic degradation of herpes simplex virions and biochemical evidence of PKR and eIF2alpha-dependent degradation of HSV-1 proteins, both of which are blocked by ICP34.5. Together, these findings indicate that xenophagy degrades HSV-1 and that this cellular function is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. Thus, autophagy-related pathways are involved in degrading not only cellular constituents and intracellular bacteria, but also viruses.  相似文献   

14.
Autophagy has been intensively studied in herpes simplex virus type 1 (HSV-1), a human alphaherpesvirus. The HSV-1 genome encodes a well-known neurovirulence protein called ICP34.5. When the gene encoding this protein is deleted from the genome, the virus is markedly less virulent when injected into the brains of animal models. Subsequent characterization of ICP34.5 established that the neurovirulence protein interacts with BECN1, thereby inhibiting autophagy and facilitating viral replication in the brain. However, an ortholog of the ICP34.5 gene is lacking in the genomes of other closely related alphaherpesviruses, such as varicella-zoster virus (VZV). Further, autophagosomes are easily identified in the exanthem (rash) that is the hallmark of both VZV diseases—varicella and herpes zoster. Inhibition of autophagy leads to diminished VZV titers. Finally, no block is detected in studies of autophagic flux following VZV infection. Thus autophagy appears to be proviral during VZV infection while antiviral during HSV-1 infection. Because divergence to this degree is extremely unusual for 2 closely related herpesviruses, we postulate that VZV has accommodated its infectious cycle to benefit from autophagic flux, whereas HSV-1 has captured cellular immunomodulatory genes to inhibit autophagy.  相似文献   

15.
Alexander DE  Leib DA 《Autophagy》2008,4(1):101-103
Autophagy functions in part as an important host defense mechanism to engulf and degrade intracellular pathogens, a process that has been termed xenophagy. Xenophagy is detrimental to the invading microbe in terms of replication and pathogenesis and many pathogens either dampen the autophagic response, or utilize the pathway to enhance their life cycle. Herpes simplex virus type 1 (HSV-1) counteracts the induction of xenophagy through its neurovirulence protein, ICP34.5. ICP34.5 binds protein phosphatase 1alpha to counter PKR-mediated phosphorylation of eIF2alpha, and also binds the autophagy-promoting protein Beclin 1. Through these interactions, ICP34.5 prevents translational arrest and down-regulates the formation of autophagosomes. Whereas autophagy antagonism promotes neurovirulence, it has no impact on the replication of HSV-1 in permissive cultured cells. As discussed in this article, this work raises a number of questions as to the mechanism of ICP34.5-mediated inhibition of autophagy, as well as to the role of autophagy antagonism in the lifecycle of HSV-1.  相似文献   

16.
Cheng G  Brett ME  He B 《Journal of virology》2002,76(18):9434-9445
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) is required for viral neurovirulence in vivo. In infected cells, this viral protein prevents the shutoff of protein synthesis mediated by double-stranded-RNA-dependent protein kinase PKR. This is accomplished by recruiting protein phosphatase 1 to dephosphorylate the alpha subunit of translation initiation factor eIF-2 (eIF-2 alpha). Moreover, the gamma(1)34.5 protein is implicated in viral egress and interacts with proliferating cell nuclear antigen. In this report, we show that the gamma(1)34.5 protein encoded by HSV-1(F) is distributed in the nucleus, nucleolus, and cytoplasm in transfected or superinfected cells. Deletion analysis revealed that the Arg-rich cluster from amino acids 1 to 16 in the gamma(1)34.5 protein functions as a nucleolar localization signal. The region from amino acids 208 to 236, containing a bipartite basic amino acid cluster, is able to mediate nuclear localization. R(215)A and R(216)A substitutions in the bipartite motif disrupt this activity. Intriguingly, leptomycin B, an inhibitor of nuclear export, blocks the cytoplasmic accumulation of the gamma(1)34.5 protein. L(134)A and L(136)A substitutions in the leucine-rich motif completely excluded the gamma(1)34.5 protein from the cytoplasm. These results suggest that the gamma(1)34.5 protein continuously shuttles between the nucleus, nucleolus, and cytoplasm, which may be a requirement for the different activities of the gamma(1)34.5 protein in virus-infected cells.  相似文献   

17.
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens.  相似文献   

18.
19.
A herpes simplex virus type 1 (HSV-1) genetic function that is required for viral replication in the murine central nervous system was unambiguously localized. Thus, cosmid clones of either HSV-1 HindIII fragment C (0.64 to 0.87 map units) or fragment B (0.64 to 0.83 plus 0.91 to 1.0 map units) were employed to restore neurovirulence to an intertypic recombinant (RE6) that is specifically deficient in this property. The neurovirulent recombinants were generated in cell culture by cotransfecting the clone fragments and unit-length RE6 DNA and then selected in mouse brains. Either fragment efficiently conferred neurovirulence to RE6, demonstrating that no short region unique sequences are required. Analyses of the genomic structures of the neurovirulent recombinants showed that, in every case, HSV-1 information from 0.71 to 0.83 map units was incorporated into the RE6 genome. Cleavage of HindIII fragment C with EcoRI eliminated its capacity to rescue RE6. Virulence could be restored by the addition of HSV-1 BamHI fragment L (0.71 to 0.74 map units) that spans an EcoRI site at 0.72 map units. The precise location of this HSV-1 neurovirulence function is discussed.  相似文献   

20.
The three Sabin strains of poliomyelitis seed virus were serially passaged in either secondary monkey kidney or Vero cell cultures and the tenth passage of each virus harvest compared to non-passaged Sabin reference virus of the same type using the monkey neurovirulence test. All three types were further attenuated by passage in Vero cells, whereas only type 2 became further attenuated after passage in secondary monkey kidney cells. After passage in Vero cells, type 3 poliomyelitis virus became more heat stable, as measured by its replicative capacity at 40°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号